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Abstract

We show how pairs of signed graphs with the same even cycles relate to pairs of grafts

with the same even cuts. These results are proved in the more general context of signed

binary matroids.

1 Introduction

We assume that the reader is familiar with the basics of matroid theory. See Oxley [4] for the

definition of the terms used here. We will only consider binary matroids in this paper. Thus the

reader should substitute the term “binary matroid” every time “matroid” appears in this text.
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Given a graph G and X ⊆ E(G), G[X ] denotes the graph induced by X . A subset C of edges

is a cycle if G[C] is a graph where every vertex has even degree. An inclusion-wise minimal

non-empty cycle is a circuit. We denote by cycle(G) the set of all cycles of G. Since the cycles

of G correspond to the cycles of the graphic matroid represented by G, we identify cycle(G)

with that matroid. Given two graphs G1 and G2 such that cycle(G1) = cycle(G2), what is the

relation between G1 and G2? This is answered by the following theorem of Whitney [8].

Theorem 1. For a pair of graphs G1 and G2, cycle(G1) = cycle(G2) if and only if G1 and G2

are related by a sequence of Whitney-flips.

We need to define the term “Whitney-flip”. Consider a graph G and a partition X , X̄ of E(G)

where |X |, |X̄ | ≥ 2 and V (G[X ])∩V (G[X̄ ]) = {u1,u2}, for some u1,u2 ∈ V (G). Let G� be ob-

tained by identifying vertices u1,u2 of G[X ] with vertices u2,u1 of G[X̄ ] respectively. Then G

and G� are related by a Whitney-flip. A Whitney-flip will also be the operation which consists

of identifying two vertices from distinct components, as well as the operation consisting of par-

titioning the graph into components each of which is a block of G. An example of two graphs

related by a Whitney-flip is given in Figure 1. In this example the set X is given by edges

5,6,9,10. As Whitney-flips preserve cycles, sufficiency of the previous theorem is immediate.
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Figure 1: Example of a Whitney-flip.

Given a graph G, we denote by cut(G) the set of all cuts of G. Since the cuts of G correspond
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to the cycles of the cographic matroid represented by G, we identify cut(G) with that matroid.

Since the matroids cut(G) and cycle(G) are duals of one another, we can reformulate Theorem 1

as follows.

Theorem 2. For a pair of graphs G1 and G2, cut(G1) = cut(G2) if and only if G1 and G2 are

related by a sequence of Whitney-flips.

A signed graph is a pair (G,Σ) where Σ ⊆ E(G). We call Σ a signature of G. A subset

D ⊆ E(G) is Σ-even (resp. Σ-odd) if |D∩Σ| is even (resp. odd). When there is no ambiguity

we omit the prefix Σ when referring to Σ-even and Σ-odd sets. In particular we refer to odd

and even edges and cycles. We denote by ecycle(G,Σ) the set of all even cycles of (G,Σ). It

can be verified that ecycle(G,Σ) is the set of cycles of a binary matroid (with ground set E(G))

which we call the even cycle matroid represented by (G,Σ). We identify ecycle(G,Σ) with that

matroid. Signed graphs are a special case of biased graphs [9] and even cycle matroids are a

special case of lift matroids [10].

A graft is a pair (G,T ) where G is a graph, T ⊆ V (G) and |T | is even. A cut δG(U) :=

{uv ∈ E(G) : u ∈U,v �∈U} is T -even (resp. T -odd) if |U ∩T | is even (resp. odd). When there

is no ambiguity we omit the prefix T when referring to T -even and T -odd cuts. We denote by

ecut(G,T ) the set of all even cuts of (G,T ). It can be verified that ecut(G,T ) is the set of cycles

of a binary matroid (with ground set E(G)) which we call the even cut matroid represented by

(G,T ). We identify ecut(G,T ) with that matroid.

Question 1: Let (G1,Σ1) and (G2,Σ2) be signed graphs.

When is the relation ecycle(G1,Σ1) = ecycle(G2,Σ2) satisfied?

Question 2: Let (G1,T1) and (G2,T2) be grafts.
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When is the relation ecut(G1,T1) = ecut(G2,T2) satisfied?

Theorem 1 anwers Question 1 for the case where Σ1 = Σ2 = /0 and Theorem 2 answers Question 2

for the case where T1 = T2 = /0. Slilaty [6] addresses a special case of the corresponding problem

for biased matroids. The corresponding problem for bicircular matroids has been widely studied

and a complete characterization of when two graphs represent the same bicircular matroid is

known (see [7], [1] and [3]).

We know that Theorems 1 and 2 are equivalent. In an upcoming paper we shall provide a

complete answer to Question 1 for three general classes of signed graphs.

The main result of this paper is Theorem 4, which illustrates the relation between Question

1 and Question 2. We introduce and explain this result in Section 2. In Section 3 we generalize

to matroids the concepts introduced in the previous section and we state and prove more general

results about signed binary matroids. Section 3.2 shows how the results on signed matroids

imply the results for signed graphs and grafts; this section also provides a more detailed version

of Theorem 4 (in Proposition 17). Section 3.3 introduces a matroid construction that leads to

matroid-preserving operations on graphs.

2 Even cycles and even cuts

2.1 Matrix representations

Even cycle and even cut matroids are binary matroids: we now explain how to obtain their

matrix representation from a signed graph or a graft representation.

Let (G,Σ) be a signed graph. Let A(G) be the incidence matrix of G, i.e. the columns of
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A(G) are indexed by the edges of G, the rows of A(G) are indexed by the vertices of G and entry

(v,e) of A(G) is 1 if vertex v is incident to edge e in G and 0 otherwise. Then A(G) is a matrix

representation of the graphic matroid represented by G. We obtain a matrix representation of

ecycle(G,Σ) as follows. Let S be the transpose of the characteristic vector of Σ; hence S is a

row vector indexed by E(G) and Se is 1 if e ∈ Σ and 0 otherwise. Let A be the binary matrix

obtained from A(G) by adding row S. Let M(A) be the binary matroid represented by A. Every

cycle C of M(A) corresponds to a cycle of G; moreover, C intersects Σ with even parity. Thus

M(A) = ecycle(G,Σ). Suppose we add an odd loop Ω to (G,Σ). This corresponds to adding

a new column to A which has all zero entries, except for row S, which contains a one. Hence

contracting Ω in the new matrix we obtain the matrix A(G). It follows that every even cycle

matroid is a lift of a graphic matroid. Note that in constructing A we may replace A(G) with any

binary matrix whose rows span the cut space of G.

Now we describe how to obtain a matrix representation of an even cut matroid from a graft

representation. For a graph G, a set J ⊆ E(G) is a T -join if T is the set of vertices of odd

degree of G[J]. Let (G,T ) be a graft and J a T -join of G. Let Â(G) be a binary matrix whose

rows span the cycle space of G. Hence Â(G) is a matrix representation of the cographic matroid

represented by G. Let Ŝ be the transpose of the incidence vector of J, that is, Ŝ is a row vector

indexed by E(G) and Ŝe is 1 if e∈ J and 0 otherwise. Construct a matrix Â from Â(G) by adding

row Ŝ. Let M(Â) be the binary matroid represented by Â. Let C be a cycle of M(Â); then C

corresponds to a cut of G and intersects J with even parity. It is easy to see that a cut intersects

J with even parity if and only if it is T -even. Thus M(Â) = ecut(G,T ). Suppose we uncontract

an odd bridge Ω in (G,Σ). This corresponds to adding a new column to Â which has all zero

entries, except for row S, which contains a one; this is because Ω is not contained in any cycle
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of G and Ω is contained in every T -join of G. Hence contracting Ω in the new matrix we obtain

the matrix Â(G). It follows that every even cut matroid is a lift of a cographic matroid.

2.2 Isomorphism

The following theorem of Gerards, Lovász, Schrijver, Seymour, Shih and Truemper (see [2])

answers Question 1 for the class of even cycle matroids within the class of graphic matroids.

Theorem 3. Let (G,Σ) and (G�,Σ�) be signed graphs. Suppose that ecycle(G,Σ)= ecycle(G�,Σ�)

and that this matroid is graphic. Then (G,Σ) and (G�,Σ�) are related by a sequence of Whitney-

flips, signature exchanges, and Lovász-flips.

We need to define the terms “signature exchange” and “Lovász-flip”. A set Σ� ⊆ E(G) is a sig-

nature of (G,Σ) if ecycle(G,Σ) = ecycle(G,Σ�). It can be readily checked that Σ� is a signature

of (G,Σ) if and only if Σ� = Σ�D for some cut D of G. The operation that consists of replacing

a signature of a signed graph by another signature is a signature exchange.

Given a graph G we denote with loop(G) the set of loops of G. Consider a signed graph

(G,Σ) and vertices v1,v2 ∈ V (G) where Σ ⊆ δG(v1)∪ δG(v2)∪ loop(G). We can construct a

signed graph (G�,Σ) from (G,Σ) by replacing the adjacencies of every odd edge e as follows:

• if e = v1v2 in G, then e becomes a loop in G� incident to v1;

• if e is a loop in G, then e = v1v2 in G�;

• if e = xvi, for 1≤ i≤ 2 and x �= v1,v2, then e = xv3−i in G�.

In this case, we say that (G�,Σ) is obtained from (G,Σ) by a Lovász-flip. An example of two

signed graphs related by a Lovász-flip is given in Figure 2, where the white vertices represent
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the vertices v1,v2 in the definition. Note that Lovász-flips are only well defined on signed graphs

(G,Σ) where Σ⊆ δG(v1)∪δG(v2)∪ loop(G) for some vertices v1 and v2 . It can be easily verified

that Lovász-flips preserve even cycles.
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Figure 2: Signed graphs related by a Lovász-flip. Bold edges are odd.

An interesting result of Shih (see [5]) characterizes the relation between graphs G and H

such that the cycle space of H is a codimension-1 subspace of the cycle space of G. In particular,

this characterizes when cycle(H) = ecycle(G,Σ) for a graph H and a signed graph (G,Σ). In

fact, if cycle(H) and cycle(G) have the same dimension, then by Theorem 1 they are related by

Whitney-flips. If they have different dimensions, then cycle(H) is a codimension-1 subspace of

cycle(G), because, for a fixed odd cycle C of (G,Σ), every other odd cycle D of G can be written

as the symmetric difference of C and the even cycle C�D.

2.3 Equivalence of Question 1 and 2

Suppose that cycle(G1)= cycle(G2) for graphs G1 and G2. Then ecycle(G1,Σ1)= ecycle(G2,Σ2)

if and only if Σ1�Σ2 is a cut of G1 (equivalently of G2). Moreover, ecut(G1,T1) = ecut(G2,T2)

if and only if any T1-join of G1 is a T2-join of G2 (recall that, for a graph H, a set J ⊆ E(H)

is a T -join if T is the set of vertices of odd degree of H[J]). Thus Questions 1 and 2 are triv-
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ial for the case when cycle(G1) = cycle(G2). A signed graph (G,Σ) is bipartite if G has no

Σ-odd cycle. The following theorem shows the relation between the two questions in the case

cycle(G1) �= cycle(G2).

Theorem 4. Let G1 and G2 be graphs such that cycle(G1) �= cycle(G2).

(1) Suppose there exists a pair Σ1,Σ2 ⊆E(G1) such that ecycle(G1,Σ1) = ecycle(G2,Σ2). For

i = 1,2, if (Gi,Σi) is bipartite define Ci := /0, otherwise let Ci be a Σi-odd cycle of Gi. Let

T3−i be the vertices of odd degree in G3−i[Ci]. Then ecut(G1,T1) = ecut(G2,T2).

(2) Suppose there exists a pair T1 ⊆ V (G1) and T2 ⊆ V (G2) (where |T1| and |T2| are even)

such that ecut(G1,T1) = ecut(G2,T2). For i = 1,2, if Ti = /0 let Σ3−i = /0, otherwise let

ti ∈ Ti and let Σ3−i := δGi(ti). Then ecycle(G1,Σ1) = ecycle(G2,Σ2).

The proof of Theorem 4 is postponed until Section 3.2. We illustrate this result with an exam-

ple. Consider the signed graphs (Gi,Σi), for i = 1,2,3, in Figure 3. (G2,Σ2) is obtained from

(G1,Σ1) by a Lovász-flip on vertices b, f ; (G3,Σ3) is obtained from (G2,Σ2) by first a signature

exchange Σ3 := Σ2�δG2(b), then by performing a Lovász-flip on vertices a, f . As Lovász-flips

and signature exchanges preserve even cycles, ecycle(G1,Σ1) = ecycle(G3,Σ3). In the same

1

8

4

7

6
5

3
2

1

8

4
7

6

5

3
2

1

8
4

7

6
5

3

2

9

9

9
a a a

b bb

c cc

ddd

e ee

f ff

G1 G2 G3

Figure 3: Bold edges of Gi are in Σi, square vertices of G1,G3 are T1,T3.
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figure consider the grafts (G1,T1) and (G3,T3) where T1 = {a,b} and T3 = {b, f}. These grafts

are obtained using the construction in Theorem 4(1). If we consider the odd cycle {4,7,9} of

(G1,Σ1), then T3 is the set of vertices of odd degree in G3[{4,7,9}]. Similarly, if we consider the

odd cycle {1,8,9} of (G3,Σ3), then T1 is the set of vertices of odd degree in G1[{1,8,9}]. The

theorem states that ecut(G1,T1) = ecut(G3,T3). We can also consider the reverse construction

as in Theorem 4(2). Pick a ∈ T1, then δG1(a) = {1,2}. Now {1,2}�Σ3 is a cut of G3, hence

{1,2} is a signature of (G3,Σ3). Similarly, pick b ∈ T3, then δG3(b) = {1,6,7,8} is a signature

of (G1,Σ1).

The following results will follow immediately from Proposition 11 and Remark 16.

Remark 5. Given graphs G1 and G2 with cycle(G1) �= cycle(G2), there exists, up to signature

exchanges, at most one pair Σ1,Σ2 such that ecycle(G1,Σ1) = ecycle(G2,Σ2) and there exists at

most one pair T1,T2 such that ecut(G1,T1) = ecut(G2,T2).

The condition that cycle(G1) �= cycle(G2) is necessary for uniqueness, as otherwise any pair

Σ1 = Σ2 will yield the same even cycles.

Suppose we can answer Question 1, does Theorem 4 then provide us with an answer to

Question 2? Consider grafts (G,T ) and (G�,T �), where ecut(G,T ) = ecut(G�,T �). By Theorem 4

there exist signatures Σ and Σ� such that ecycle(G,Σ) = ecycle(G�,Σ�). Suppose we know a

sequence of signed graphs (Gi,Σi), for i ∈ [n], with (G,Σ) = (G1,Σ1) and (G�,Σ�) = (Gn,Σn),

where (Gi,Σi) have the same even cycles for all i ∈ [n]. (For example, this is the case when

T � = /0 (i.e. ecut(G�,T �) is cographic) as then Σ = /0 (i.e. ecycle(G,Σ) is graphic) and Theorem 3

then describes how (G,Σ) and (G�,Σ�) are related.) Can we find sets Ti, for all i ∈ [n], such that

T = T1,T � = Tn where (Gi,Ti) have the same even cuts for all i ∈ [n]? The example in Figure 3
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shows that this is not always the case. Remark 5 states that graphs G1 and G3 determine T1 and

T3 uniquely. However, it is not possible to find a set T2 such that ecut(G1,T1) = ecut(G2,T2),

because the edge 9 is a loop in G2 but is contained in the T1-even cut {6,7,8,9} of G1.

This leads to the following definition: a set of graphs {G1, . . . ,Gn} is harmonious if, for

all distinct i, j ∈ [n], cycle(Gi) �= cycle(G j) and there exist Σ1, . . . ,Σn and T1, . . . ,Tn such that

ecycle(Gi,Σi) = ecycle(G j,Σ j) and ecut(Gi,Ti) = ecut(G j,Tj), for all i, j ∈ [n]. For instance,

the set {G1,G2,G3} in Figure 3 is not harmonious. In fact no large set of graphs is harmonious.

Theorem 6. Suppose that {G1, . . . ,Gn} is a harmonious set of graphs. Then n≤ 3.

Note that, in contrast, it is easy to construct arbitrarily large sets of graphs {G1, . . . ,Gn} such

that, for all distinct i, j ∈ [n], cycle(Gi) �= cycle(G j) and for which there exist Σ1, . . . ,Σn such

that ecycle(Gi,Σi) = ecycle(G j,Σ j), for all i, j ∈ [n].

The bound of 3 is best possible. A construction that yields a harmonious set of 3 graphs

{G1,G2,G3} is as follows: let (G1,Σ1) be any signed graph with vertices u,v where Σ1 ⊆

δG1(u)∪δG1(v). Let (G2,Σ2) be obtained from (G1,Σ1) by a Lovász-flip on u,v, and let (G3,Σ3)

be obtained from (G1,Σ1�δG1(u)) by a Lovász-flip on u,v. Finally, let T1 = {u,v} and for

i = 2,3, let Ti be the vertices in Gi corresponding to u,v.

The proof of Theorem 6 follows immediately from the proof of Theorem 15 in Section 3.1.4.

3 Generalization to signed matroids

In this section we will generalize to matroids the concepts introduced in the previous section.

Recall that all the matroids considered in this work are binary. Let M be a matroid and let

Σ ⊆ E(M). A cycle of M is any subset C ⊆ E(M) such that C is equal to the union of pairwise
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disjoint circuits. A cocycle is a cycle of the dual M∗ of M. A pair (M,Σ), where Σ ⊆ E(M), is

a signed matroid. A subset D ⊆ E(M) is Σ-even (resp. Σ-odd) if |D∩Σ| is even (resp. odd).

The set of all cycles of M that are Σ-even forms the set of cycles of a matroid which we denote

by ecycle(M,Σ). We say that Σ� is a signature of (M,Σ) if ecycle(M,Σ) = ecycle(M,Σ�). It can

be readily checked that Σ� is a signature of (M,Σ) if and only if Σ� = Σ�D for some cocycle

D of M. The operation that consists of replacing a signature of a signed matroid by another

signature is called signature exchange. A signed matroid (M,Σ) is bipartite if all cycles of M

are Σ-even. It can be easily verified that (M,Σ) is bipartite if and only if Σ is a cocycle of M.

When M = cycle(G) for some graph G, then ecycle(M,Σ) = ecycle(G,Σ) and the reader should

verify that in this context the aforementioned definitions for signed matroids correspond to the

definitions for signed graphs.

3.1 Results for signed matroids

3.1.1 Pairs

Let (M1,Σ1) and (M2,Σ2) be signed matroids such that ecycle(M1,Σ1) = ecycle(M2,Σ2). A

cycle (resp. cocycle) C of M1 is preserved from M1 to M2 if C is also a cycle (resp. cocycle) of

M2. A signature of (M1,Σ1) is preserved if it is a signature of (M2,Σ2). Isomorphism problems

for signed binary matroids arise in pairs.

Theorem 7. Let (M1,Σ1) and (M2,Σ2) be signed matroids with ecycle(M1,Σ1)= ecycle(M2,Σ2).

Then there exist Γ1,Γ2 ⊆ E(M1) such that ecycle(M∗
1 ,Γ1) = ecycle(M∗

2 ,Γ2) and, for i = 1,2, the

Γi-even cocycles of Mi are exactly the preserved cocycles of Mi. Moreover, if (Mi,Σi) is bipartite,

then so is (M∗
3−i,Γ3−i).
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The proof requires a number of preliminaries and is postponed to the end of the section. Given

a signed matroid (M,Σ), the cocycles of ecycle(M,Σ) are the sets that intersect every Σ-even

cycle of M with even cardinality. Thus we have the following.

Remark 8. The cocycles of ecycle(M,Σ) are the cocycles of M and the signatures of (M,Σ),

which in turns implies the following.

Remark 9. Suppose that ecycle(M1,Σ1) = ecycle(M2,Σ2).

(1) If D is a non-preserved cocycle of M1 then D is a signature of (M2,Σ2).

(2) If D is a non-preserved signature of (M1,Σ1) then D is a cocycle of M2.

Proof. For both (1) and (2), Remark 8 implies that D is a cocycle of ecycle(M1,Σ1) and hence

of ecycle(M2,Σ2). Remark 8 implies that D is either a cocycle of M2 or a signature of (M2,Σ2).

For (1) D is not a cocycle of M2, for (2) D is not a signature of (M2,Σ2).

Lemma 10. Suppose that ecycle(M1,Σ1) = ecycle(M2,Σ2), for signed matroids (M1,Σ1) and

(M2,Σ2). For i = 1,2, there exists Γi⊆E(Mi) such that, for every cocycle D of Mi, D is preserved

if and only if it is Γi-even. Moreover, if (M3−i,Σ3−i) is bipartite, then Γi = /0.

Proof. Fix i ∈ {1,2}. Let B be a cobasis of Mi. For any e �∈ B, let De denote the unique

cocircuit in B∪{e} (these are the fundamental cocircuits of Mi). Then we let e ∈ Γi if and only

if De is non-preserved. Consider now an arbitrary cocycle D of Mi. D may be expressed as

the symmetric difference of a set of distinct fundamental cocircuits De, where, say, s of these

are non-preserved. By construction, |D∩Γi| = s. By Remark 9(1), non-preserved cocycles of

Mi are signatures of (M3−i,Σ3−i). Moreover, the symmetric difference of an even (resp. odd)

12



number of signatures of (M3−i,Σ3−i) is a cocycle of M3−i (resp. a signature of (M3−i,Σ3−i)). It

follows that D is a cocycle of M3−i when s is even and is a signature of (M3−i,Σ3−i) when s is

odd. If (M3−i,Σ3−i) is non-bipartite, then signatures of (M3−i,Σ3−i) are not cocycles of M3−i

and the result follows. If (M3−i,Σ3−i) is bipartite, then every cocycle of Mi is preserved. As a

consequence, Γi = /0 and the result follows as well.

Proof of Theorem 7. Lemma 10 implies that, for i = 1,2, there exists Γi ⊆ E(M1) such that

the preserved cocycles of Mi are exactly the Γi-even cocycles of Mi. Hence, ecycle(M∗
1 ,Γ1) =

ecycle(M∗
2 ,Γ2). Again by Lemma 10, if (Mi,Σi) is bipartite, then Γ3−i = /0, so (M∗

3−i,Γ3−i) is

bipartite.

3.1.2 Uniqueness

The main observation in this section is the following.

Proposition 11. Suppose (M1,Σ1) and (M2,Σ2) are signed matroids such that M1 �= M2 and

ecycle(M1,Σ1) = ecycle(M2,Σ2). For i = 1,2, the Σi-even cycles of Mi are exactly the preserved

cycles of Mi. In particular, Σ1 and Σ2 are unique up to signature exchanges.

Proposition 11 follows directly from the next remark.

Remark 12. Suppose ecycle(M1,Σ1) = ecycle(M2,Σ2). If C is a Σ1-odd cycle of M1 which is

preserved, then cycle(M1) = cycle(M2).

Proof. For any odd cycle D of (M1,Σ1), let B := D�C. As B is an even cycle of (M1,Σ1),

we know that B is an even cycle of (M2,Σ2), hence D is an odd cycle of (M2,Σ2). Hence,

cycle(M1) ⊆ cycle(M2). As C is a cycle of M1 and M2 and C is Σ1-odd, C is also a preserved

Σ2-odd cycle of M2. Hence by symmetry the reverse inclusion holds as well.
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3.1.3 Odd cycles and signatures

Remark 13. Suppose that ecycle(M1,Σ1) = ecycle(M2,Σ2), for signed matroids (M1,Σ1) and

(M2,Σ2), where M1 �= M2. If (M1,Σ1) is bipartite, then let Σ := /0. Otherwise there exists a

non-preserved cocycle D of M2; let Σ := D. Then Σ is a signature of (M1,Σ1).

Proof. We may assume that (M1,Σ1) is non-bipartite. By Theorem 7, there exist Γ1 and Γ2

such that, for i = 1,2, the Γi-even cocycles of Mi are exactly the preserved cocycles of Mi. If

every cocycle of M2 is preserved, then (M∗
2 ,Γ2) is bipartite. It follows, from Theorem 7 applied

to (M∗
1 ,Γ1) and (M∗

2 ,Γ2), and from Proposition 11, that (M1,Σ1) is bipartite, a contradiction.

Hence, some cocycle D of M2 is non-preserved. The result then follows by Remark 9(1).

The signature Σ of (M1,Σ1) in Remark 13 is called an M2-standard signature.

Theorem 14. Let (M1,Σ1) and (M2,Σ2) be signed matroids such that M1 �= M2 and let Γ1 ⊆

E(M1) and Γ2 ⊆ E(M2). Assume that ecycle(M1,Σ1) = ecycle(M2,Σ2) and ecycle(M∗
1 ,Γ1) =

ecycle(M∗
2 ,Γ2). If, for i = 1,2, Σi is an M3−i-standard signature, then for any D ⊆ E(M1) the

following hold.

(1) Suppose that (M1,Σ1) is non-bipartite. Then

D is a Σ1-odd cycle of M1 if and only if D is a Σ2-even signature of (M∗
2 ,Γ2).

(2) Suppose that (M1,Σ1) and (M2,Σ2) are non-bipartite. Then

D is a Σ1-odd signature of (M∗
1 ,Γ1) if and only if D is a Σ2-odd signature of (M∗

2 ,Γ2).

Proof. We begin with the proof of (1). Let D be a Σ1-odd cycle of M1. Remark 12 implies that

D is non-preserved. Remark 9(1) implies that D is a signature of (M∗
2 ,Γ2). If Σ2 = /0, then D is

trivially Σ2-even. Otherwise, as Σ2 is a standard signature, Σ2 is a cocycle of M1. Since M1 is a
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binary matroid, cycles and cocycles have an even intersection, hence D is Σ2-even. Conversely,

let D be a Σ2-even signature of (M∗
2 ,Γ2). As (M1,Σ1) is non-bipartite, there exists a Σ1-odd

cycle C of M1. By the first part of the proof, C is a Σ2-even signature of (M∗
2 ,Γ2). Therefore

C�D is a Σ2-even cycle of M2, hence a Σ1-even cycle of M1. Thus D is a Σ1-odd cycle of M1.

We now proceed with the proof of (2). Let D be a Σ1-odd signature of (M∗
1 ,Γ1). Moreover,

let C be a Σ1-odd cycle of M1. Then D�C is a Σ1-even signature of (M∗
1 ,Γ1). By part (1) and

symmetry between M1 and M2, D�C is a Σ2-odd cycle of M2. Also, by part (1), C is a Σ2-even

signature of (M∗
2 ,Γ2). Hence D = (D�C)�C is a Σ2-odd signature of (M∗

2 ,Γ2). Hence every

Σ1-odd signature of (M∗
1 ,Γ1) is a Σ2-odd signature of (M∗

2 ,Γ2). The other inclusion follows by

symmetry between M1 and M2.

3.1.4 Harmonious sets

A set of matroids {M1, . . . ,Mn} is harmonious if Mi �= Mj, for all distinct i, j ∈ [n], and there exist

signatures Σ1, . . . ,Σn and Γ1, . . . ,Γn such that ecycle(Mi,Σi)= ecycle(Mj,Σ j) and ecycle(M∗
i ,Γi)

= ecycle(M∗
j ,Γ j), for all i, j ∈ [n].

Theorem 15. Suppose that {M1, . . . ,Mn} is a harmonious set of matroids. Then n≤ 3.

Proof. Suppose for a contradiction that there exists a harmonious set {M1, . . . ,M4}. Note that,

by Proposition 11, Σ1, . . . ,Σ4, Γ1, . . . ,Γ4 are unique up to signature exchange. First suppose

that (Mk,Σk) is bipartite for some k ∈ [4]. Then, by Theorem 7, (M∗
i ,Γi) is bipartite for every

i ∈ [4]\{k}. Hence, for i, j ∈ [4]\{k}, the matroids Mi and Mj have the same cocycles, hence

Mi = Mj, a contradiction. Therefore, for every i ∈ [4], (Mi,Σi) is non-bipartite and by duality

(M∗
i ,Γi) is non-bipartite as well. By Theorem 7, a cocycle C of M4 is non-preserved if and only
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if it is Γ4-odd. We fix C to be an odd cocycle of (M4,Γ4), and conclude that C is non-preserved

for Mi, for all i ∈ [3]. By definition, C is an M4-standard signature for (Mi,Σi), for all i ∈ [3].

For every i ∈ [3], let Ci be a C-odd signature of (M∗
i ,Γi). Note that such signatures exist

because (Mi,Σi) is non-bipartite, hence the symmetric difference of an odd circuit of (Mi,Σi)

and the signature of (M∗
i ,Γi) will be an odd signature. By Theorem 14(2), Ci is a signature of

(M∗
4 ,Γ4), for every i ∈ [3]. The symmetric difference of two signatures of (M∗

4 ,Γ4) is a cycle

of M4. Moreover, for some j,k ∈ [3] with j �= k, Cj and Ck have the same parity with respect

to Σ4. Hence D := Cj�Ck is a Σ4-even cycle of M4, so D is a Σi-even cycle of Mi for every

i ∈ [4]. Therefore Cj = D�Ck is a C-odd signature of both (M∗
j ,Γ j) and (M∗

k ,Γk). Now let C�

be a Σ4-odd cycle of M4. By Theorem 14(1), C� is a C-even signature of (M∗
j ,Γ j) and (M∗

k ,Γk).

Therefore Cj�C� is a C-odd cycle of both Mj and Mk. Hence, by Remark 12, Mj = Mk, a

contradiction.

3.2 Applications to signed graphs and grafts

In this section we show how the results for signed matroids apply to signed graphs and grafts.

Remark 16. Let (G,T ) be a graft, let Γ be a T -join of G and let M = cut(G).

(1) A cut of G is T -even if and only if it is Γ-even. In particular, ecut(G,T ) = ecycle(M,Γ).

(2) A set of edges is a T -join of G if and only if it is a signature of (M,Γ).

Proof of Theorem 4. We begin with the proof of (1). We omit the cases when (G1,Σ1) or

(G2,Σ2) is bipartite. For i = 1,2, let Mi := cycle(Gi). By Theorem 7, there exist Γ1 and Γ2 such

that ecycle(M∗
1 ,Γ1) = ecycle(M∗

2 ,Γ2). Since Ci is an odd cycle of (Mi,Σi), it is non-preserved.
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It follows from Remark 9(1) that Ci is a signature of (M∗
3−i,Γ3−i). Hence, ecycle(M∗

1 ,C2) =

ecycle(M∗
2 ,C1). Let Ti be the vertices of odd degree in Gi[C3−i]. Remark 16(1) implies that

ecut(G1,T1) = ecut(G2,T2).

We proceed with the proof of (2). We omit the cases when T1 = /0 or T2 = /0. For i = 1,2,

let Mi := cut(Gi) and let Γi be a Ti-join of Gi. Remark 16(1) implies that ecycle(M1,Γ1) =

ecycle(M2,Γ2). By Theorem 7 there exist Σ̃1 and Σ̃2 such that ecycle(M∗
1 , Σ̃1) = ecycle(M∗

2 , Σ̃2).

As Σi = δG3−i(t3−i) is a T3−i-odd cut of G3−i, by Remark 16(1) Σi is a Γ3−i-odd cycle of

(M3−i,Γ3−i). It follows from Remark 9(1) that Σi is a signature of (M∗
i , Σ̃i). We conclude

that ecycle(G1,Σ1) = ecycle(M∗
1 ,Σ1) = ecycle(M∗

2 ,Σ2) = ecycle(G2,Σ2).

Suppose that ecycle(G1,Σ1)= ecycle(G2,Σ2) and ecut(G1,T1)= ecut(G2,T2), where cycle(G1)

�= cycle(G2). If (G1,Σ1) is bipartite, let Σ := /0. Otherwise, by Remark 13, there exists a T2-odd

cut D of (G2,T2); let Σ := D. Then Σ is a standard signature of (G1,Σ1). Given a signature Σ̃i of

(Gi,Σi), Σi�Σ̃i is a cut D of Gi. We say that Σ̃i is Ti-even (resp. Ti-odd) if D is a Ti-even (resp.

Ti-odd) cut.

Proposition 17. Suppose that ecycle(G1,Σ1) = ecycle(G2,Σ2) and ecut(G1,T1) = ecut(G2,T2),

where cycle(G1) �= cycle(G2). If Σ1 and Σ2 are standard signatures, the following hold.

(1) Suppose that (G1,Σ1) is non-bipartite. Then

D is a Σ1-odd cycle of G1 if and only if D is a Σ2-even T2-join of G2.

(2) Suppose that (G1,Σ1) and (G2,Σ2) are non-bipartite. Then

D is a Σ1-odd T1-join of G1 if and only if D is a Σ2-odd T2-join of G2.

(3) Suppose that T1 �= /0. Then

D is a T1-odd cut of G1 if and only if D is T2-even signature of (G2,Σ2).
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(4) Suppose that T1,T2 �= /0. Then

D is a T1-odd signature of (G1,Σ1) if and only if D is T2-odd signature of (G2,Σ2).

We illustrate Proposition 17 on the example in Figure 3. We have that Σ�1 := δG3( f ) = {1,9} is

a standard signature of (G1,Σ1) and Σ�3 := δG1(a) = {1,2} is a standard signature of (G3,Σ3).

Then the odd cycle {4,7,9} of (G1,Σ�1) is a Σ�3-even T3-join of G3. The set {1} is a Σ�1-odd

T1-join of G1 and a Σ�3-odd T3-join of G3. Moreover {1,3,5} = δG1({a,c}) is a T1-odd cut of

G1. As {1,3,5}�Σ�3 = {2,3,5} = δG3(c), {1,3,5} is a T3-even signature of (G3,Σ�3). Finally,

{2,9} is a T1-odd signature of (G1,Σ�1) which is also a T3-odd signature of (G3,Σ�3).

Proof of Proposition 17. We prove parts (1) and (3) only, as statements (2) and (4) follow sim-

ilarly from Theorem 14(2). We begin with the proof of (1). For i = 1,2, let Mi := cycle(Gi).

Clearly, D is a cycle of G1 if and only if D is a cycle of M1. Let Γ2 be a T2-join of G2. Re-

mark 16(2) implies that D is a T2-join of G2 if and only if D is a signature of (M∗
2 ,Γ2). The

result now follows from Theorem 14(1). We proceed with the proof of (3). For i = 1,2, let

Mi := cut(Gi) and let Γi be a Ti-join of Gi. Remark 16(1) implies that D is a T1-odd cut of G1

if and only if D is a Γ1-odd cycle of M1. Since Σ2 is a standard signature of (M∗
2 ,Σ2), Σ2 is a

Γ1-odd cycle of M1. It follows from Theorem 14(1) that Σ2 is Γ2-even. D is a T2-even signature

of (G2,Σ2) if and only if D is a signature of (M∗
2 ,Σ2) where Σ2�D is T2-even. Equivalently, by

Remark 16(1), Σ2�D is Γ2-even. As Σ2 is Γ2-even, this occurs if and only if D is Γ2-even. The

result now follows from Theorem 14(1).
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3.3 Whitney-flips and Lovász-flips - a unified view

In this section we explain how Whitney-flips and Lovász-flips arise from a simple matroid con-

struction. We will apply the same construction to even cut matroids to derive an operation on

grafts that preserves even cuts. Given a matroid M and disjoint subsets I and J of E(M), we

denote by M/I \ J the matroid obtained from M by contracting I and deleting J. We require the

following observation.

Lemma 18. Let M be a matroid and let a,b,c,d denote distinct elements of M. Suppose that

{a,b,c,d} is both a cycle and a cocycle of M. Then M/{a,b}\{c,d} = M \{a,b}/{c,d}.

Proof. Let M1 := M/{a,b}\{c,d} and let M2 := M \{a,b}/{c,d}. We want to show that the

cycles of M1 are exactly the cycles of M2. By symmetry between M1 and M2 (and between

{a,b} and {c,d}), it suffices to show that every cycle of M1 is a cycle of M2. Let C be any cycle

of M1 . Then there exists a cycle D of M such that C ⊆ D ⊆ C∪ {a,b}. Since {a,b,c,d} is a

cocycle of M and M is binary, |D∩ {a,b,c,d}| is even. Hence, either none of a,b are in D or

both of a,b are in D. In the former case, D = C and C is cycle of M2 as required. In the latter

case, D = C∪{a,b}. Since {a,b,c,d} is a cycle of M, D�{a,b,c,d} = C∪{c,d} is a cycle of

M. It follows that C is cycle of M2.

Given a graph G and disjoint subsets I and J of E(G), we denote by G/I \ J the graph obtained

from G by contracting the edges in I and deleting the edges in J. We need to define minors

for signed graphs and grafts. Let (G,Σ) be a signed graph and let e ∈ E(G). Then (G,Σ)\ e is

defined as (G\e,Σ\{e}). (G,Σ)/e is equal to (G\e, /0) if e is an odd loop of (G,Σ); to (G\e,Σ)

if e is an even loop of (G,Σ); otherwise (G,Σ)/e is equal to (G/e,Γ), where Γ is any signature

of (G,Σ) which does not contain e. Let (G,T ) be a graft and let e ∈ E(G) with endpoints s and
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t. Then (G,T )/e is defined as (G/e,T �), where T � := T \{s, t} if both of s, t or none of s, t are in

T , and T � := T \{s, t}∪{u}, where u is the vertex corresponding to the edge e in G/e, if exactly

one of s and t are in T . (G,T ) \ e is equal to (G \ e, /0) if e is an odd cut of (G,T ); otherwise

(G,T )\ e is equal to (G\ e,T ). The following are easy to verify:

cycle(G)/I \ J = cycle
�
G/I \ J

�

ecycle(G,Σ)/I \ J = ecycle
�
(G,Σ)/I \ J

�
(1)

ecut(G,T )/I \ J = ecut
�
(G,T )\ I/J

�

3.3.1 Whitney-flips

Consider a graph G which consists of components G[X1] and G[X2], for some partition X1,X2

of E(G). For i = 1,2, pick vertices si and ti in G[Xi]. Denote by C the set of edges {a,b,c,d},

where a = (s1, t1),b = (s2, t2),c = (s1, t2) and d = (s2, t1). Let H be the graph obtained from

G by adding the edges in C. Since C is a circuit and a cut of H, it is a cycle and a cocycle

of cycle(H). Lemma 18 implies that cycle(H) \ {a,b}/{c,d} = cycle(H)/{a,b} \ {c,d}. It

follows from (1) that cycle(H \ {a,b}/{c,d}) = cycle(H/{a,b} \ {c,d}). It can now be easily

verified that H \ {a,b}/{c,d} and H/{a,b} \ {c,d} are related by a Whitney-flip and that any

two graphs related by a single Whitney-flip can be obtained in that way. In particular, graphs

related by Whitney-flips have the same set of cycles.

3.3.2 Lovász-flips

Consider a graph G. Pick vertices s1, t1,s2 and t2 of G. Denote by C the set of edges {a,b,c,d},

where a = (s1, t1),b = (s2, t2),c = (s1, t2) and d = (s2, t1). Let H be the graph obtained from

20



G by adding the edges in C. Since C is an even cycle of (H,C), it is a cycle of ecycle(H,C).

Since C is a signature of (H,C), it is a cocycle of ecycle(H,C) (see Remark 8). Lemma 18

implies that ecycle(H,C)\{a,b}/{c,d} = ecycle(H,C)/{a,b}\{c,d}. It follows from (1) that

ecycle
�
(H,C) \ {a,b}/{c,d}

�
= ecycle

�
(H,C)/{a,b} \ {c,d}

�
. It can now be easily verified

that (H,C)\ {a,b}/{c,d} and (H,C)/{a,b} \ {c,d} are related by a Lovász-flip (and possibly

signature exchanges) and that any two signed graphs related by a single Lovász-flip can be

obtained in that way. In particular, graphs related by Lovász-flips have the same set of even

cycles.

3.3.3 A corresponding operation for even cuts

Let us now find a counterpart to the Lovász-flip operation for even cuts. Consider a graph G

which consists of components G[X1] and G[X2], for some partition X1,X2 of E(G). For i = 1,2,

pick vertices si, ti,ui,vi in G[Xi]. Denote by C the set of edges {a,b,c,d}, where a = (s1,s2),b =

(t1, t2),c = (u1,u2) and d = (v1,v2). Let H be the graph obtained from G by adding the edges

in C. Let T := {s1,s2, t1, t2,u1,u2,v1,v2}. Since C is an even cut of (H,T ), it is a cycle of

ecut(H,T ). Moreover, C is a T -join of H. It follows from Remark 8 and Remark 16(2) that

C is a cocycle of ecut(H,T ). Lemma 18 implies that ecut(H,T ) \ {a,b}/{c,d} = ecut(H,T )

/{a,b} \ {c,d}. It follows from (1) that ecut
�
(H,T ) \ {a,b}/{c,d}

�
= ecut

�
(H,T )/{a,b} \

{c,d}
�
. Hence, the two grafts (H,T ) \ {a,b}/{c,d} and (H,T )/{a,b} \ {c,d} have the same

even cuts. This defines a new operation that preserves even cuts. It turns out, however, that this

operation is a special case of the Tilt operation introduced by Gerards [2] for even cycles.
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