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Abstract

We show that for every fixed undirected graphH, there is aO(|V(G)|3) time algorithm that tests, given
a graphG, if G containsH as a topological subgraph (that is, a subdivision ofH is subgraph ofG). This
shows that topological subgraph testing is fixed-parametertractable, resolving a longstanding open question of
Downey and Fellows from 1992.

As a corollary, for everyH we obtain anO(|V(G)|3) time algorithm that tests if there is an immersion ofH
into a given graphG. This answers another open question raised by Downey and Fellows in 1992.

1 Introduction

A graphH is a topological subgraph(or topological minor) of graphG if a subdivision ofH is a subgraph ofG.
Equivalently,H is a topological subgraph ofG if H can be obtained fromG by deleting edges, deleting vertices,
and dissolving degree 2 vertices (which means deleting the vertex and making its two neighbors adjacent). This
notion appears for example in the classical result of Kuratowski in 1935 stating that a graph is planar if and only
if it does not have a topological subgraph isomorphic toK5 or K3,3.

Given graphsH andG, it is NP-complete to decide ifH is a topological subgraph ofG (e.g., a cycle of length
|V(G)| is a topological subgraph ofG if and only if G is Hamiltonian). On the other hand, our main result shows
that for every fixedH, there is a cubic algorithm:

Theorem 1.1. For every fixed graph H, there is a O(|V(G)|3) time algorithm that decides if H is a topological
subgraph of G.

Actually, our algorithm is uniform inH, and this shows that the problem of testing ifH is a topological
subgraph ofG is fixed-parameter tractable parameterized by the number ofvertices ofH. Recall that a problem is
fixed-parameter tractableby some parameterk if it can be solved in timef (k) ·nO(1) for a function f depending
only onk. Thus Theorem 1.1 answers a longstanding open question, first raised in 1992 by Downey and Fellows
[3] and then restated at many places, including the open problem list of the monograph [4]. The problem of testing
for topological subgraphs, which is also known as the subgraph homeomorphism problem, was already studied
in the 1970s by Lapaugh and Rivest [10] (also see [7]). Fortune, Hopcroft, and Wyllie [6] studied the directed

∗Research partly supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research, by Kayamori Foun-
dation and by Inoue Research Award for Young Scientists.

1

http://arxiv.org/submit/0141624/pdf


version of the problem and showed that there are simple digraphs H such that the problem of testing whether
a given digraphG containsH as a (directed) topological subgraph is NP-complete. In a major breakthrough,
Robertson and Seymour [11] proved that this cannot happen for undirected graphs: For every (undirected) graph
H there is a polynomial time algorithm testing whether a givengraphG containsH as a topological subgraph.
(We will discuss Robertson and Seymour’s result in more detail below.) However, the running time of Robertson
and Seymour’s algorithm is|V(G)||V(H)|. This prompted Downey and Fellows’ questions of whether theproblem
is fixed-parameter tractable. Our Theorem 1 answers this question.

We also study the related problem of testing for immersed subgraphs. Animmersionof a graphH into a graph
G is defined like a topological embedding, expect that the paths in G corresponding to the edges ofH are only
required to be edge disjoint instead of internally vertex disjoint. Formally, an immersion ofH into G is a mapping
α that associates with each vertexv∈V(H) a vertexα(v) ∈V(G) and with each edgee= vw∈ E(H) a pathα(e)
in G with endpointsα(v) andα(w) in such a way that the pathsα(e) for e∈ E(H) are mutually edge disjoint.
Robertson and Seymour [14] showed that graphs are well-quasi-ordered under the immersion relation, proving a
conjecture of Nash-Williams. Here we obtain the following algorithmic result as a corollary to Theorem 1.1:

Corollary 1.2. For every fixed graph H, there is a O(|V(G)|3) time algorithm that decides if there is an immersion
of H into G.

Again, our algorithm is uniform inH, which implies that the immersion problem is fixed-parameter tractable.
This answers another open question by Downey and Fellows [3,4].

Yet another related problem is minor containment testing. We say that graphH is aminor of G if H can be
obtained fromG by deleting vertices, deleting edges, and contracting edges. A celebrated result of Robertson and
Seymour [11] shows that for every fixedH, there is aO(|V(G)|3) time algorithm for testing ifH is a minor ofG.
Their algorithm actually solves a more general rooted version of the problem. This rooted version contains as a
special case thek-DISJOINT PATHS problem, where given pairs(s1, t1), . . . , (sk, tk) of vertices, the task is to find
vertex disjoint pathsP1, . . . , Pk such thatPi connectssi andti. It is not difficult to reduce testing ifH is a topological
subgraph ofG to k-DISJOINT PATHS. For each vertexv of H, we guess a vertexv′ of G, and then for each edgeuv
of H, we find a path connectingu′ andv′ in G such that these|E(H)| paths are pairwise internally disjoint. This
approach yields the|V(G)|O(|V(H)|) time algorithm for topological subgraph testing mentionedabove.

Our algorithm for finding topological subgraphs follows thegeneral framework of Robertson and Seymour
for minor testing, but it deviates from it significantly. Letus give a very high-level overview of Robertson and
Seymour’s algorithm [11]. If the treewidth ofG is “small,” then standard techniques allow us to solve the problem
in linear time. If the treewidth ofG is “large,” then we find anirrelevant vertexwhose deletion provably does not
change the answer to the problem. By iteratively finding and deleting irrelevant vertices, we eventually arrive to
a G whose treewidth is small. To find an irrelevant vertex if the treewidth ofG is large, we use the the so-called
Weak Structure Theorem, which allows us either to find a large clique minor or to show that the graph has a large
“flat wall.”. The case of a large clique minor is easy to handle: if there are no roots, then it immediately solves
the problem (as every small graph appears in the large cliqueminor) and even if roots are present, we can argue
that a large part of the clique is irrelevant. The most difficult part of the algorithm is to deal with the case of a
flat wall and to identify an irrelevant vertex there. Indeed,this case needs the majority of the work. The analysis
of this case requires the whole series of Graph Minor papers and the structure theorem of [12]. Very recently, a
significantly simpler treatment of this case was presented in [9].

Let us now give an overview for our algorithm. The case of small treewidth goes through for topological
minor testing without any difficulty. The new proof in [9] forminor testing in the case when there is no large
clique minor can be adapted for topological minor testing. Specifically, for the case where there is a large flat wall,
using the unique linkage theorem [13] and its much shorter proof [9], we can indeed find an irrelevant vertex in
the middle of the large flat wall. This case is similar to that for the minor testing, however, we may need to change
almost all of the branch vertices of a given topological minor inside the flat wall. This gives rise to some amount
of technical difficulties, which we overcome in this paper. Let us emphasis that our proof of the correctness for
our algorithm does not depend on the full power of the graph minor structure theorem [12], while Robertson and
Seymour’s analysis for their algorithm do needs the whole series of Graph Minor papers and the structure theorem
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of [12]. Utilizing some results in [9], we are able to avoid the much of the heavy machinery of the graph minor
structure theory.

Let us now look at the case when there is a large clique minor. Identifying a large clique minor was an easy
situation to handle in the case of finding minors, but it is notobvious how it is of any use in the case of finding
topological subgraphs. The problem is that the degrees of the vertices matter much more in finding topological
subgraphs than in finding minors. IfH is, say, 4-regular and we have found a large clique minor in a part of G
that contains only degree-3 vertices, then this clique minor does not immediately solve the problem. Furthermore,
asG can contain many vertices of degree at least 4 close to this clique minor and each such vertex is potentially
the image of some vertex ofH, there is no easy argument that shows that some part of the clique is irrelevant.
We circumvent these problems by introducing a new operationthat was not present in the framework of [11]. If
a small number of vertices can separate away a large part of the graph, then we recursively “understand” this part
and then replace it with an equivalent smaller graph. We showthat if no such step can be performed, then we
can completely understand how the large clique minor can be used by a topological subgraph. This new operation
and the associated recursion changes the high-level structure of our algorithm considerably: unlike in [11], it is no
longer just an iterative removal of irrelevant vertices.

Similarly to [11], we define and solve a very general rooted version of the problem (“finding folios”). It is
important to point out that we are solving this rooted generalization not (only) for the sake of obtaining maximum
generality of the result. In the recursion steps involving separators, we argue about topological subgraphs using
the separator in a certain way, and the concept of roots is needed to express these requirements.

2 Folios

A rooted graphis an undirected graphG with a setR(G) ⊆ V(G) of vertices specified as roots and an injective
mappingρG : R(G) → N assigning a distinct positive integer label to each root vertex. Isomorphism of rooted
graphs are defined the obvious way, i.e., roots must be mappedto roots with the same label. We say that two
rooted graphsG1 andG2 arecompatibleif ρG1(R(G1)) = ρG2(R(G2)), i.e. the same set of positive integers appear
on G1 andG2 (which means in particular that|R(G1)|= |R(G2)|).

We say that rooted graphH is a topological minorof rooted graphG if there is a mappingφ (a modelof H in
G) that assigns to eachv∈V(H) a vertexφ(v) ∈V(G) and to eache∈ E(G) a pathφ(e) in G such that

(1) The verticesφ(v) (v∈V(H)) are distinct.
(2) If u,v∈V(H) are the endpoints ofe∈ E(H), then pathφ(e) connectsφ(u) andφ(v).
(3) The pathsφ(e) (e∈ E(H)) are pairwise internally vertex disjoint, i.e., the internal vertices ofφ(e) do not

appear as an (internal or end) vertex ofφ(e′) for anye′ 6= e.
(4) For everyv∈ R(H), ρG(φ(v)) = ρH(v).

Even ifH is a topological minor ofG, they are not necessarily compatible:G can have more root vertices thanH.
The folio of G is the set of all topological minors ofG. Clearly, the folio is closed under isomorphism, i.e., if

rooted graphsH andH ′ are isomorphic andH is in the folio ofG, thenH ′ is in the folio as well. Ifδ ≥ 0 is an
integer, then theδ -folio of G contains every topological minorH of G with |E(H)|+ is(H) ≤ δ , where is(H) is
the number of isolated vertices ofH. Obviously, every graph in theδ -folio has at most 2δ vertices.

Observation 2.1. The number of distinct graphs (up to isomorphism) in theδ -folio of G can be bounded by a
function ofδ and |R(G)|.

There are 2(
|R(G)|

2 ) possible undirected graphs onR(G). For each such graphX, we slightly abuse notation by
definingG+X the obvious way. The rooted graphG+X has aδ -folio, which may or may not be different from

theδ -folio of G. The 2(
|R(G)|

2 )-tuple of all theseδ -folios will be called theextendedδ -folio of G.
Given an extendedδ -folio F , a representativeof F is a rooted graphG whose extendedδ -folio is F . We

define the constantLδ ,r to be the smallest integer such that for every rooted graphG with at mostr roots, the
extendedδ -folio of G has a representative on at mostLδ ,r vertices. It is clear thatLδ ,r is finite.

Lemma 2.2. There is a computable functionℓ(δ , r) with Lδ ,r ≤ ℓ(δ , r) for everyδ , r ≥ 0.
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Proof. Let G be a graph of minimum order with a givenδ -folio with r roots. Suppose that theδ -folio consists of
graphsH1, . . . ,Hm. For eachi ∈ [m], let H ′

i be a subgraph ofG isomorphic to a subdivision ofHi. LetWi ⊆V(H ′
i )

be the set of vertices corresponding to the vertices ofHi, and letPi be the set of paths inH ′
i corresponding to the

edges ofHi. Note thatG=
⋃m

i=1 Hi by the minimality ofG. LetW :=
⋃m

i=1Wi andP :=
⋃m

i=1P. In the terminology
of Section 5,P is a path system. Letk := |P|; obviouslyk can be effectively bounded in terms ofδ and r. It
follows from the Unique Linkage Theorem 5.11, or more precisely Corollary 5.12, and the minimality ofG that
the treewidth ofG is bounded byw(k) for some computable functionw. The computability ofw can be checked
by going through the proof of the Unique Linkage Theorem [13,9].

It is easy to see that the folio of a rooted graph can be defined in monadic-second order logic MSO. That
is, we can find an MSO-sentenceϕ stating that a graph has the desired folio. Hence we only haveto prove
that an MSO-sentenceϕ that has a model of treewidth at mostℓ has such a model of order at mostg(ϕ , ℓ), for
some computable functiong. This is well-known. To prove it, we give a translation (anMSO-transduction) that
transformsϕ to a sentenceϕ∗ in the language of colored trees and associates with every graphG of treewidth at
mostℓ and every tree decompositionD of G of width at mostℓ a colored treeT(G,D) of roughly the same size
asG such thatϕ∗ is only satisfied by trees of the formT(G,D), andT(G,D) satisfiesϕ∗ if and only if G satisfies
ϕ (such a translation is described, for example, in Section 11.4 of [5]). Then we use a theorem due Thatcher and
Wright [16] to (effectively) construct a tree automatonA that accepts a treeT if and only if T satisfiesϕ∗. By a
Pumping-Lemma argument, we obtain an effective boundh(A) such that ifA accepts any tree at all, then it accepts
a tree of size at mosth(A). As all the transformations involved are computable, this yields the desired bound on
the smallest model ofϕ and thus on the size of the smallest graph with the given folio.

The (extended)δ -folio of a graphG with respect toa setZ ⊆V(G) is the (extended)δ -folio of the graphG′,
whereG′ has the same set of vertices and edges asG, but R(G′) = Z. We will use this notion to avoid defining
new graphs that differ only in the set of roots. Some straightforward observations:

Proposition 2.3. Let G be a rooted graph and letδ ≥ 0 be an integer.

(1) The extended 0-folio of G contains only the empty graph.

(2) Let R⊆ Q ⊆ V(G) be two sets of vertices. Theδ -folio of G with respect to R can be obtained from the
δ -folio of G with respect to Q.

(3) Let R1, . . . , Rt be subsets of V(G) such that for every subset Q⊆ R(G) of size at most2δ there is a1≤ i ≤ t
such that Q⊆ Ri. Theδ -folio of G can be obtained from theδ -folios of G with respect to R1, . . . , Rt .

(4) The extendedδ -folio of G can be obtained from the(δ + |R(G)|)-folio of G.

2.1 Separations and replacements

A separationof a graphG is a pair(A,B) of subgraphs such thatV(G) =V(A)∪V(B), E(G) = E(A)∪E(B), and
E(A)∩E(B) = /0. Theorder of the separation(A,B) is |V(A)∩V(B)|.

Let (A,B) be a separation of rooted graphGsuch thatV(A)∩V(B)⊆R(G). LetA′ be a rooted graph compatible
with A. Replacing Awith A′ in the separation(A,B) gives the graphG′ defined as follows. We haveV(G′) =
V(A′)∪ (V(B) \V(A)), G′ has every edge ofA′ and B\V(A), and G′ has the following additional edges: if
u∈V(A)∩V(B) andv∈V(B) \V(A) are adjacent inG, andu′ ∈V(A′) is a vertex withρA(u) = ρA′(u′), thenu′

andv are adjacent inG′. Intuitively, we removeA from G, and replace it byA′ such that the role ofV(A)∩V(B) is
taken by the matching root vertices ofA′. The following lemmas show how the folio changes after replacement:

Lemma 2.4. Let(G1,G2) be a separation of a rooted graph G, let S=V(G1)∩V(G2), and suppose that S⊆R(G).
Let G′

1 be a rooted graph compatible with G1 such that G1 and G′
1 have the same extendedδ -folio. Let G′ be the

graph obtained by replacing G1 with G′
1 in the separation(G1,G2). Then G and G′ have the same extended

δ -folio.

Proof. Without loss of generality, we can assume thatR(G)∩V(G1) = S: extendingG2 such thatV(G2) fully
containsR(G) does not change the statement of the theorem. Under this assumption, it is sufficient to prove the
weaker statement thatG andG′ have the same (not extended)δ -folio (but the condition thatG1 andG′

1 have the
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sameextendedδ -folio is not changed). To see this, consider an arbitrary graphX onR(G). Let X1 be the subgraph
of X induced byR(G)∩V(G1) = Sand letX2 = X \E(X1). Now G+X has a separation(G1+X1,G2+X2) and
G′+X has a separation(G′

1+X1,G′
2+X2). As G1 andG′

1 have the same extendedδ -folio, graphsG1+X1 and
G′

1+X1 have the same extendedδ -folio as well. Therefore, the weaker statement shows thatG+X andG′+X
have the sameδ -folio. As this is true for everyX onR(G), it follows thatG andG′ have the same extendedδ -folio.

Let H be a rooted graph with|E(H)|+ is(H)≤ δ and letφ be a model ofH in G. We need to show thatH has
a modelφ ′ in G′.

We define the graphX∗ on S= R(G)∩V(G1) such thatuv∈ X∗ for someu,v∈ S if there is an edgee∈ E(H)
such thatφ(e) has a subpath with endpointsu and v and every internal vertex inV(G2) \V(G1). For every
uv∈ E(X∗), let Puv be this subpath. Given a pathP in G with endpoints inV(G1), we denote by[P]G1 the path
obtained by replacing subpaths ofP that leaveV(G1) by appropriate edges ofX∗. Similarly, if Q is a path in
G1+X∗, then we denote by[Q]G the path ofG obtained by replacing each edgeuv of X∗ by the corresponding
pathPuv.

We define a graphH∗ and a modelψ of H∗ in G1 +X∗ as follows. First, graphH∗ contains every vertex
v∈V(H) with φ(v) ∈V(G1); if v∈ R(H), thenv is in R(H∗) and has the same root number inH andH∗. For such
vertices, we setψ(v) = φ(v). We introduce additional vertices and edges toH∗ as follows. We classify each edge
e= uv∈V(H) into one of 6 types, and modifyH∗ accordingly.

(1) φ(u),φ(v) ∈V(G1). For each such edge, there is a corresponding edgee∗ = uv in H∗. We defineψ(e∗) =
[φ(e)]G1.

(2) φ(u) ∈V(G1), φ(v) 6∈V(G1), andφ(e) has an internal vertex inV(G1). For each such edge, let us introduce
a new vertexv∗e that has the same root number as the last vertexw of φ(e) (going fromu to v) that is in
V(G1). Note that this last vertex has to be inS⊆ R(G), hence it is a root vertex. Letψ(v∗e) = w. We
introduce an edgee∗ = uv∗e in H∗ and setψ(e∗) = [P]G1, whereP is the subpath ofφ(e) from u to w.

(3) φ(u) ∈V(G1), φ(v) 6∈V(G1), andφ(e) has no internal vertex inV(G1). This is only possible ifu∈V(G1)∩
V(G2), henceu is a root. We modifyH∗ by makingu a root (if it is not already a root), having the same root
number asφ(u).

(4) φ(u),φ(v) 6∈V(G1), andφ(e) has no internal vertex inV(G1). No change is done toH∗.
(5) φ(u),φ(v) 6∈V(G1), andφ(e) has a single internal vertexw in V(G1). This is only possible ifw∈V(G1)∩

V(G2), and hencew is a root. An isolated root vertexi∗e is introduced toH∗, with the same root number as
w. Let ψ(i∗e) = w.

(6) φ(u),φ(v) 6∈V(G1), andφ(e) has more than one internal vertex inV(G1). Let ue 6= ve be the first and last
vertices, respectively, onφ(e) (going fromu to v) that are inV(G1). Note thatue andve are inV(G1)∩
V(G2), hence they are root vertices. Let us introduce root vertices v∗e and u∗e in H∗ that have the same
root numbers asue andve, respectively; letψ(u∗e) = ue andψ(v∗e) = ve. Let us also introduce an edgee∗

connectingv∗e andu∗e, and letψ(e∗) = [P]G1, whereP is the subpath ofφ(e) from ue to ve.

This completes the description ofH∗. It should be clear thatψ is a model ofH∗ in G1+X∗. Furthermore, we
claim that|E(H∗)|+ is(H∗) ≤ |E(H)|+ is(H) ≤ δ . First, for each edge ofH, we introduce at most one edge in
H∗ (for type 3–5 edges, we introduce no new edge inH∗). Moreover, a vertex ofH∗ can be isolated only if it was
isolated inH, or only type 3 edges were adjacent to it, or it was introducedintroduced as a vertexi∗e corresponding
to a type 5 edgee. This means that the number of isolated vertices inH∗ is at most is(H) plus the number of type
3–5 edges inH.

As H∗ is a topological minor ofG1 +X∗, it is a topological minor ofG′
1 +X∗ as well; letψ ′ be a model

of H∗ in G′
1+X∗. We show thatψ ′ can be used to define a modelφ ′ of H in G′, what we need to show. For

everyv ∈ V(H) with φ(v) ∈ V(G1), let φ ′(v) = ψ ′(v) (asv ∈ V(H∗) in this case) and for everyv ∈ V(H) with
φ(v) ∈V(G2)\V(G1), let φ ′(v) = φ(v). The images of the 6 different type of edges inH are defined as follows.

(1) Let φ ′(e) := [ψ ′(e)]G
′
.

(2) Letw∈ Sbe the last vertex onφ(e) from u to v. We obtainφ ′(e) by concatenating[ψ ′(uv∗e)]
G′

(which goes
from ψ ′(u) to w) and the subpath ofφ(e) from w to v.
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(3) φ ′(e) := φ(e).
(4) φ ′(e) := φ(e).
(5) φ ′(e) := φ(e).
(6) The pathφ ′(e) is obtained by concatenating the subpath ofφ(e) from u to uv, the path[ψ ′(u∗ev∗e)]

G′
, and the

subpath ofφ(e) from uv to u.

It is not difficult to verify that the pathsφ ′(e) defined above are internally disjoint. What is important to observe
is that if a subpath ofφ(e) is used in the definition above, then every vertex of this subpath inV(G1)∩V(G2)
corresponds to a root ofH∗, hence it cannot conflict with that pathsψ ′(e). Thusφ ′ is a model ofH in G′, what we
had to show.

Lemma 2.4 implies that a separation allows us to determine the folio from the folios of two smaller graphs.

Proposition 2.5. Let (G1,G2) be a separation of a rooted graph G, let S= V(G1)∩V(G2), and suppose that
S⊆ R(G). The extendedδ -folio of G can be computed from the extendedδ -folios of G1 and G2.

Proof. Let F1 andF2 be the extendedδ -folios of G1 andG2, respectively. Let use brute force to find minimum
representativesG′

1 andG′
2 of F1 andF2, respectively. By definition, we have|V(G′

1)|, |V(G′
2)| ≤ Lδ ,|R(G)|. By

Lemma 2.4, replacingG1 with G′
1 in the separation(G1,G2) does not change the extendedδ -folio. With a second

application of Lemma 2.4, we can replaceG2 with G′
2, and obtain a graphG′ on at most 2Lδ ,|R(G)| vertices that

have the same extendedδ -folio asG. The extendedδ -folio of G′ can be determined by brute force.

Given a rooted graphG, let w be a weight function that assigns a positive integer to each vertex ofV(G).
The w-boundedδ -folio of G contains those membersH of the δ -folio of G that have a modelφ satisfying the
additional requirement that for everyv∈ R(H), the degree ofv in H is at mostw(φ(v)). Note that we do not make
any restriction on the degree of a non-root vertexu of H, even ifφ(u) happens to be a root vertex ofG. The term
unboundedδ -folio is used when we want to emphasize that we are referringto the original definition ofδ -folio.
Thew-bounded extendedδ -folio is defined analogously. Given a weight functionw on the vertices ofG, we define
w(S) = ∑v∈Sw(v) for everyS⊆V(G).

Lemma 2.4 does not remain true forw-bounded folios: it is not true thatG andG′ have the samew-bounded
extendedδ -folio is not sufficient to require thatG1 and G′

1 have the samew-boundedextendedδ -folio. The
particular point where the proof would fail is that a type 3 edge can make a vertex ofH a root which was not a root
in H, and therefore it is not true that the modelψ is w-bounded. However, the proof can be fixed if we impose the
additional assumption thatG1 andG′

1 have the same unbounded extended(δ − 1)-folio. This statement will be
used in Section 4 in a situation where thew-boundedδ -folio of G1 is easy to determine and we can use recursion
to compute the unbounded(δ −1)-folio.

Lemma 2.6. Let(G1,G2) be a separation of a rooted graph G, let S=V(G1)∩V(G2), and suppose that S⊆R(G).
Let w be a weight function that assigns a positive integer to each vertex of V(G). Let G′

1 be a rooted graph
compatible with G1 such that G1 and G′

1 have the same w-bounded extendedδ -folio and the same unbounded
extended(δ −1)-folio. Let G′ be the graph obtained by replacing G1 with G′

1 in the separation(G1,G2). Then G
and G′ have the same w-bounded extendedδ -folio.

Proof. The proof is the same as the proof Lemma 2.4 with one additional argument. Suppose first that|E(H∗)|+
is(H∗)≤ δ −1. In this case, we know thatH∗ is in the(δ −1)-folio of G′

1+X∗ as well, thus the modelψ ′ exists
and the modelφ ′ can be constructed. Note thatR(G) = R(G2), which means thatφ ′(v) = φ(v) for every root
vertex ofH and thereforeφ ′ is w-bounded ifφ is w-bounded.

Suppose now that|E(H∗)|+ is(H∗) = δ . We claim that in this caseψ is w-bounded and henceH∗ is in the
w-boundedδ -folio of G1+X∗ (not only in the unboundedδ -folio). The vertices inV(H∗) \V(H) have degree
at most 1, thus the degree bound holds for such vertices (recall that w(ψ(v)) is strictly positive). If a vertex
v ∈ R(H∗)∩V(H) is in R(H), thenψ(v) = φ(v) and hence the degree condition holds. Thus we have potential
problems only with vertices in(R(H∗)∩V(H))\R(H), i.e., vertices that were already present as non-root vertices
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in H, but became roots inH∗. The only way such a vertexu could have become a root is ifu was incident to a type
3 edgeuv. If u is isolated inH∗, then the degree bound immediately holds. Ifu is not isolated, then the type 3 edge
uv does not create any edge or any new isolated vertex inH∗, thus there is at least one edge ofH that does not
contribute towards|E(H∗)|+ is(H∗), contradicting|E(H∗)|+ is(H∗) = δ . Thus no such vertexu is possible, and
it follows that ψ is w-bounded. AsG1 andG′

1 have the samew-bounded extendedδ -folio, the modelψ ′ exists,
and the rest of the proof is the same as before.

Analogously to Prop. 2.5, a separation gives a way of determining thew-bounded folio.

Proposition 2.7. Let (G1,G2) be a separation of a rooted graph G, let S= V(G1)∩V(G2), and suppose that
S⊆ R(G). Let w be a weight function that assigns a positive integer toeach vertex of R(G). The w-bounded
extendedδ -folio of G can be computed from the w-bounded extendedδ -folio of G1, the unbounded extended
(δ −1)-folio of G1, and the unbounded extendedδ -folio of G2.

3 Algorithmic framework

The main result of the paper is an algorithm FINDFOLIO that determines the extendedδ -folio of the given graph.

FINDFOLIO
Input: Rooted graphG, integerδ .

Output: The extendedδ -folio of G.

Theorem 3.1. There is an algorithm satisfying the specification ofFINDFOLIO that runs in f1(δ , |R(G)|) · |V(G)|3

steps, for some computable function f1.

For technical reasons, we prove Theorem 3.1 in the followingform:

Lemma 3.2. There is an algorithm satisfying the specification ofFINDFOLIO on instances with|R(G)| ≤ 16δ 2

that runs in f′1(δ ) · |V(G)|3 steps, for some computable function f′
1.

It is clear that Lemma 3.2 implies Theorem 3.1: by increasingδ to, say,|R(G)|, the algorithm of Lemma 3.2
can be used even if|R(G)| is arbitrary.

First we design three auxiliary algorithms that either return the extendedδ -folio, or some information that
is helps our progress: an irrelevant vertex, a clique minor,or an appropriate separation. We say that a setX of
vertices isirrelevantto the (extended)δ -folio of G, if rooted graphsG andG\X have the same (extended)δ -folio.
We say that a vertexv is irrelevant if the set{v} is irrelevant. Note that even if every vertex of a setX is irrelevant,
the setX need not be irrelevant.

FIND IRRELEVANTORSEPARATION
Input: Rooted graphG, integerδ , integerL.

Output: – The extendedδ -folio of G, or
– a vertexv∈V(G) irrelevant to the extendedδ -folio of G, or
– a separation(G1,G2) of G with |V(G1)|, |V(G2)| ≥ L and having order at most 4δ 2.

We say thatB1, . . . , Bk are the branch sets of aKk-minor, if they are pairwise disjoint, and for every 1≤ i <
j ≤ k, there is an edge with one endpoint inBi and one endpoint inB j .

FIND IRRELEVANTORCLIQUE
Input: Rooted graphG, integerδ , integerk.

Output: – Theδ -folio of G, or
– a vertexv∈V(G) irrelevant to theδ -
folio of G, or
– the branch setsB1, . . . , Bk of a Kk-
minor inG.

FIND IRRELEVANTORCLIQUEX
Input: Rooted graphG, integerδ , integerk.

Output: – Theextendedδ -folio of G, or
– a vertexv∈V(G) irrelevant to theex-
tendedδ -folio of G, or
– the branch setsB1, . . . , Bk of a Kk-
minor inG.

Theorem 3.3. There is an algorithm satisfying the specification ofFIND IRRELEVANTORCLIQUE that runs in
f2(δ , |R(G)|,k) · |V(G)| steps, for some computable function f2.
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Algorithm 1 FINDFOLIO

1: Let L := 4δ 2+1.
2: Let X := /0 {X is irrelevant to the extendedδ -folio of G}
3: Let Ret= FIND IRRELEVANTORSEPARATION(G\X,δ ,L).
4: if Ret is the extendedδ -folio F of G\X then
5: return F
6: if Ret is an irrelevant vertexv then
7: Let X := X∪{v}
8: goto 3
9: if Ret is a separation(G1,G2) of G\X then

10: S:=V(G1)∩V(G2)
11: G′

1 := AddRoot(G1,S)
12: F = FINDFOLIO(G′

1,δ )
13: if there is a representativeG′′

1 of F with at mostL verticesthen
14: G′′ := (G′′

1,G2)
15: G′′′ := RemoveRoot(G′′,S\R(G))
16: return FINDFOLIO(G′′′,δ )
17: else
18: Let L := L+1
19: goto 3

Theorem 3.3 is proved in Section 5. It is easy to show that an algorithm for FIND IRRELEVANTORCLIQUE

can be used to obtain an algorithm for FIND IRRELEVANTORCLIQUEX:

Corollary 3.4. There is an algorithm satisfying the specification ofFIND IRRELEVANTORCLIQUEX that runs in
f ′2(δ , |R(G)|,k) · |V(G)| steps, for some computable function f′

2.

Proof. Let us run the algorithm FIND IRRELEVANTORCLIQUE given by Theorem 3.3 onG with δ ′ := δ + |R(G)|
andk′ := k. If this call returns theδ ′-folio of G, then by Prop. 2.3(3), we are able to compute and output the
extendedδ -folio of G. If the call returns a vertexv that is irrelevant to theδ ′-folio of G, then again by Prop. 2.3(3),
vertexv is irrelevant to the extendedδ -folio of G, and hence can be returned as a correct output. Finally, a minor
model of ak-clique inG is a also a valid output for FIND IRRELEVANTORCLIQUEX.

Section 4 presents an algorithm for FIND IRRELEVANTORSEPARATION:

Theorem 3.5. There is an algorithm satisfying the specification ofFIND IRRELEVANTORSEPARATION that runs
in f3(δ , |R(G)|,L) · |V(G)|2 steps, for some computable function f3.

We prove Theorem 3.5 and Lemma 3.2 by simultaneous induction. In the rest of this section, we prove
Lemma 3.2 for someδ , assuming that Theorem 3.5 is true for thisδ ; while in Section 4, we prove Theorem 3.5
for someδ , assuming that Lemma 3.2 is true forδ −1. It is clear that these two proofs together prove Theorem 3.5
and Lemma 3.2 for everyδ ≥ 0.

Proof (of Lemma 3.2).Let L∗ = max{Lδ ,12δ 2,16δ 2}. This constant will be required only for the analysis of the
algorithm and it does not appear explictly in the description of the algorithm. Algorithm 1 shows the algorithm
in pseudocode. The functions AddRoot(G,S) and RemoveRoot(G,S) return a rooted graph whereS is added
to/removed from the set of roots, respectively.

Let L := 4δ 2 + 1. We will increaseL during the algorithm, but (as we shall see)L ≤ L∗ will always hold.
Initially we setX := /0; it will always hold that the set of verticesX is irrelevant to the extendedδ -folio of G.

Let us run algorithm FIND IRRELEVANTORSEPARATION of Theorem 3.5 withG\X, δ , andL. If the output
is the extendedδ -folio of G\X, then we are done. If the output is a vertexv irrelevant to the extendedδ -
folio of G\X, then letX := X∪{v} and call FIND IRRELEVANTORSEPARATION again. It is clear that the new

8



X is irrelevant to the extendedδ -folio of G. Suppose that (after returning some number of irrelevant vertices)
FIND IRRELEVANTORSEPARATION returns a separation(G1,G2) of G\X with |V(G1)|, |V(G2)| ≥ L and having
order at most 4δ 2. Note thatL > 4δ 2, and hence|V(G1)\V(G2)|, |V(G2)\V(G1)|> 0.

Let G′, G′
1, G′

2 be the same asG\X, G1, and G2, respectively, with the difference that every vertex of
S= V(G1)∩V(G2) is a root (in addition to the original roots). Without loss ofgenerality, we can assume that
|R(G1)| ≤ |R(G2)| and hence|R(G′

1)| ≤ |R(G)|/2+ |S| ≤ 12δ 2. Let us call FINDFOLIO recursively to find the
extendedδ -folio of G′

1 and then let us try to construct by brute force a representative G′′
1 of this folio having at

mostL vertices. If we do not find such a representative, then we increaseL by one, and go back to calling FIND-
IRRELEVANTORSEPARATION (note that this is possible only ifL < Lδ ,12δ 2 ≤ L∗, thus we never increaseL above
L∗). Otherwise, we replaceG′

1 with G′′
1 in the separation(G′

1,G
′
2); let G′′ be the new graph. By Lemma 2.4,G′

andG′′ have the same extendedδ -folio. Let G′′′ be the graph obtained fromG′′ by making those vertices ofS
non-roots that are non-roots inG (i.e., |R(G′′′)|= |R(G)|). It is clear that the extendedδ -folio of G\X andG′′′ are
the same. Thus we can finish the algorithm by recursively calling FINDFOLIO onG′′′ (note that|R(G′′′)| ≤ 16δ 2).

It is obvious from the description that the answer returned by the algorithm is correct. Note that|V(G′
1)|, |V(G′′)|<

|V(G)|, thus this recursive procedure always terminates.
We need to show that the number of steps can be bounded byg(δ ) · |V(G)|3 for some functiong. The running

time required for instances with at mostL∗+1 vertices can be bounded by a constant depending only onδ . We
show that there is a functiong′ such that the running time can be bounded byg′(δ )(|V(G)−L∗−1)|V(G)|2 for
instances with|V(G)|> L∗+1. We prove by induction on|V(G)| that this holds ifg′(δ ) is sufficiently large.

Let us bound first the number of steps without the calls to FIND IRRELEVANTORSEPARATION and the recur-
sive calls to FINDFOLIO. Let x be the number of times FIND IRRELEVANTORSEPARATION returned an irrelevant
vertex. Then FIND IRRELEVANTORSEPARATION was called at mostx+L∗ times (each call either returned an ir-
relevant vertex or increasedL, butL≤ L∗ always hold). Therefore, each line is executed at mostx+L∗ times. Each
step can be done in linear time in the size of the graph, thus wecan bound the running time byc1 · (x+1)|V(G)|2

for some constantc1 depending onδ . By Theorem 3.5, each call to FIND IRRELEVANTORSEPARATION can be
bounded byf3(δ ,16δ 2,L)|V(G)|2 steps and the maximum possible value ofL is a function ofδ , thus the total
time required for these calls can be bounded byc2 · (x+1)|V(G)|2 for some constantc2 depending only onδ .

Finally, let us bound the running time of the recursive callsto FINDFOLIO. If |V(G′
1)| ≤ L∗+1 or |V(G′′′)| ≤

L∗+1, then the number of steps of these calls can be bounded by a constant depending only onδ . Let us assume in
the following that|V(G′

1)|, |V(G′′′)|> L∗+1. As we noted earlier,|V(G′
1)|, |V(G′′′)|< |V(G)|, thus the induction

hypothesis can be used to bound the running time of these calls. Therefore, the total running time can be bounded
as follows:

(c1+c2)(x+1)|V(G)|2+g′(δ )(|V(G′
1)|−L∗−1)|V(G′

1)|
2+g′(δ )(|V(G′′′)|−L∗−1)|V(G′′′)|2

≤ g′(δ )
(

(x+1)+ |V(G′
1)|−L∗−1+ |V(G′′′)|−L∗−1

)

|V(G)|2

≤ g′(δ )
(

(x+1)+ |V(G′
1)|−L∗−1+ |V(G′

2)\V(G′
1)|−1

)

|V(G)|2

≤ g′(δ )(|V(G)|−L∗−1)|V(G)|2.

In the first inequality, we assume thatg′(δ ) ≥ c1+ c2. The second inequality follows from|V(G′′′)| = |V(G′′
1)∪

V(G′
2)| and|V(G′′

1)| ≤ L ≤ L∗. The last inequality follows from|X|+ |V(G′
1)∪V(G′

2)|= |V(G)|.

4 Using a large clique minor

In this section, we prove Theorem 3.5 for someδ , assuming that Lemma 3.2 holds forδ −1. We use the following
lemma due to Robertson and Seymour ((5.4) of [11]):

Lemma 4.1. Let G be a graph and Z⊆ V(G). Let t ≥ (3/2) · |Z|, and let B1, . . . ,Bk ⊆ V(G) be the branch
sets of a Kk-minor of G. Suppose that there is no separation(G1,G2) of G of order< |Z| with Z⊆ V(G1) and
Bb∩V(G1)= /0 for some b∈ [k]. Then for every partition(Z1, . . . ,Zn) of Z into nonempty subsets there are pairwise
disjoint connected subgraphs T1, . . . ,Tn ⊆ G such that V(Ti)∩Z = Zi for all i ∈ [n].
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We say that theδ -folio of a graph isgenericif it is as large as possible: it contains every rooted graphH with
E(H)+ is(H)≤ δ andρH(R(H))⊆ ρG(R(G)). We say that theδ -folio of a graph isrooted-genericif it contains
every such graphH with the additional condition that every vertex ofH is rooted (thus generic implies rooted-
generic, but not necessarily the other way). The notions of generic and rooted-generic are defined analogously for
the extended andw-bounded folios. Note that ifG has a genericδ -folio, thenG+X has genericδ -folio for any
graphX on R(G): adding edges can only add more graphs to the folio. Thus the extendedδ -folio of G is generic
if and only if theδ -folio is generic. We can use Lemma 4.1 to obtain sufficient conditions for generic folios:

Lemma 4.2. Let G be a rooted graph. Let w be a positive integer weight function on V(G). Let k≥ (3/2) ·
w(R(G)), and let B1, . . . ,Bk ⊆ V(G) be the branch sets of a Kk-minor of G. Suppose that there is no separation
(G1,G2) of G with w(V(G1)∩V(G2))< w(R(G)), R(G)⊆V(G1), and Bi ∩V(G1) = /0 for some i∈ [k].

(1) The w-boundedδ -folio of G is rooted-generic.
(2) If there are at least2δ vertices v in R(G) with w(v)≥ 2δ , then the w-boundedδ -folio of G is generic.

Proof. We need to show that every possible candidateH is in thew-boundedδ -folio of G. Suppose therefore that
H is a rooted graph with|E(H)|+ is(H) ≤ δ , R(H) =V(H), andρH(R(H)) ⊆ ρG(R(G)). For everyu∈V(H),
let φ(u) be the vertex ofG with the same root number asu and assume thatdH(u)≤ w(φ(u)) for everyu∈V(H).
We need to show thatH is a topological minor ofG, i.e.,φ can be extended to a model ofH in G.

For everyv∈V(G), let us definew′(v) = dH(u) if v= φ(u) for someu∈V(H), and letw′(v) = w(v) if there
is no suchu. Clearly,w′(v) ≤ w(v) for everyv∈V(G): the degree condition holds for everyv∈ R(H) =V(H)
in φ . Let G′ be the graph obtained fromG by extending each vertexz∈ R(G) into a cliqueKz of sizew′(z), i.e.,
we introducew′(z)−1 new vertices that are adjacent to each other, to vertexz, and to every neighbor ofz. The
clique Kz containsz and thesew′(z)−1 new vertices. LetZ :=

⋃

z∈R(G)Kz. Let us show first that the conditions
of Lemma 4.1 hold forZ in G′. Suppose for contradiction that(G′

1,G
′
2) is a separation ofG′ of order less than

|Z|= w′(R(G))≤ w(R(G)) with Z ⊆V(G′
1) andBb ⊆V(G′

2)\V(G′
1) for someb∈ [k]. Let S′ :=V(G′

1)∩V(G′
2)

be the separator. Without loss of generality, we may assume that for allz∈ R(G), eitherKz∩S′ = /0 orKz⊆ S′. Let
G1 :=G′

1\(Z\R(G)) andG2 :=G′
2\(Z\R(G)). Then(G1,G2) is a separation ofG; let S=V(G1)∩V(G2) be the

separator. Now it is clear thatw(S) = |S′| < |Z| = w′(R(G)) ≤ w(R(G)). However, we also haveR(G) ⊆V(G1)
andBb∩V(G1) = /0, contradicting the assumption of the lemma being proved.Thus we can conclude that there is
no such separation(G′

1,G
′
2), and the conditions of Lemma 4.1 hold forZ′ andG′.

Let us partitionZ′ in such a way that for every edgeuv∈ E(H), there is a 2-element class of the partition
consisting of a vertex inKφ(u) and a vertex inKφ(v). As Kφ(u) andKφ(v) contain exactlydH(u) anddH(v) vertices,
respectively, such a partition exists. Lemma 4.1 gives a setof pairwise disjoint subgraphs, one for each class of
the partition. For every edgeuv∈ E(H), let us denote byTuv the connected subgraph corresponding to the class
consisting of a vertex ofKφ(u) and a vertex ofKφ(v), and let us chose a pathP′

uv in Tuv that goes from a vertex of
Kφ(u) to a vertex ofKφ(v). It is clear that the collectionP ′ of |E(H)| paths obtained this way are pairwise disjoint
in G′. Let us definePuv such that wheneverP′

uv contains a vertex of someKz, then we replace it byz; let P be the
collection of these pathsPuv for everyuv∈ E(H). Observe that the wayG′ was defined ensures thatPuv is a path
in G. We claim that the paths inP are pairwise internally disjoint inG. As the paths inP ′ are pairwise disjoint,
the only possible problem is that for somew ∈ V(H), vertexφ(w) is an internal vertex of some pathPuv with
w 6∈ {u,v}. However, there aredH(w) = |Kφ(w)| paths inP whose endpoint isφ(w) and hence the disjointnessP ′

ensure that there cannot be more thandH(w) paths using vertexφ(w). We finish the proof of the first statement by
extendingφ into a model ofH by definingφ(uv) to be the pathPuv.

To prove the second statement, letH be a rooted graph with|E(H)|+ is(H)≤ δ . Let us obtainH ′ by making
every vertex ofH ′ a root: if v ∈ V(H) is not rooted, then let us assign to it a root number that appears on a
vertexv∈ R(G) with w(v) ≥ δ and is not already used by a vertex ofH. As |V(H)| ≤ 2δ , the conditions of the
lemma show that we can assign root numbers this way. Since thew-boundedδ -folio of G is rooted-generic,H ′ is
topological minor ofG, which means thatH is also a topological minor ofG.

We prove Theorem 3.5, under the assumption that Theorem 3.1 is true forδ −1. Let us define the following
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constants:

h := 2δ
s := 4δ 2

k := max{L,10δ 2}+ |R(G)|

One possible correct output of FIND IRRELEVANTORSEPARATION is a separation(G1,G2) of Gwith |V(G1)|, |V(G2)| ≥
L and|V(G1)∩V(G2)| ≤ s. We refer to this asfinding a small separator.

The algorithm for FIND IRRELEVANTORSEPARATION starts by calling FIND IRRELEVANTORCLIQUEX for
G, δ , andk. If F IND IRRELEVANTORSEPARATION returns an irrelevant vertex or the extendedδ -folio of G, then
this is a valid output for FIND IRRELEVANTORSEPARATION as well. Suppose therefore that FIND IRRELEVAN-
TORSEPARATION returns ak-clique minor with branch setsB1, . . . , Bk. As at most|R(G)| of these sets intersect
R(G), we can assume without loss of generality thatB1, . . . , BL are disjoint fromR(G).

The rest of the section discusses two cases depending on the number of vertices with degree at leastL in G′.

4.1 Case 1: Many high-degree vertices

Suppose that there are at leasth vertices with degree at leastL. LetU be a set ofh such vertices.
Let us enumerate every nonempty subset of size at most 2δ of |R(G)|; let R1, . . . , Rt be these subsets. Letwi

be a weight assignment onV(G) such thatw(v) = δ if v∈ Ri ∪U andw(v) = 1 otherwise. By Proposition 3, the
folio of G can be obtained from the foliosG with respect toR1, . . . , Rt . Furthermore, thewi-boundedδ -folio of G
with respect toRi is obviously the same as the unboundedδ -folio with respect toRi.

For every 1≤ i ≤ t, we compute a separation(Gi
1,G

i
2) of G such thatRi ∪U ⊆V(Gi

1), there is a 1≤ b≤ L with
Bb ⊆V(Gi

2)\V(Gi
1), andwi(V(Gi

1)∩V(Gi
2)) is as small as possible. Such a separation(Gi

1,G
i
2) can be done by

running, for every 1≤ j ≤ L, a weighted minimum vertex cutset algorithm to find a set of vertices that separates
Ri ∪U andB j ; among theseL separations, we define(Gi

1,G
i
2) to be the one that minimizeswi(V(Gi

1)∩V(Gi
2)).

Let Si :=V(Gi
1)∩V(Gi

2).
Note that(G[Ri ∪U ],G\E(G[Ri ∪U ])) is always a separation that satisfies the requirements, thuswe can

assume thatwi(Si) ≤ w(Ri ∪U)δ (2δ + h) = s. As each ofB1, . . . , BL intersectsV(Gi
2), we have|V(Gi

2)| ≥ L.
This means that if|V(Gi

1)| ≥ L also holds, then separation(Gi
1,G

i
2) is a small separation that can be returned as a

valid output of FIND IRRELEVANTORSEPARATION. Thus we can assume in the following that|V(Gi
1)|< L. This

implies thatU ⊆ Si : if someu∈U is not inSi , then every neighbor ofu is inV(Gi
1), and|V(Gi

1)| ≥ L follows.
We use Lemma 4.2 to show that thewi-boundedδ -folio of Gi

2 is genericwith respect to Si . At most |Si | ≤
wi(Ri ∪U)≤ δ (|Ri |+ |U |)≤ 4δ 2 of the setsB1, . . . , BL intersectSi , thus we can suppose without loss of generality
that B1, . . . , B6δ 2 are disjoint fromSi . Suppose thatGi

2 has a separation(F1,F2) contradicting the conditions of
Lemma 4.2:Si ⊆ V(F1), Bb ⊆ V(F2) \V(F1) for some 1≤ b ≤ 6δ 2, andwi(V(F1)∩V(F2)) < wi(Si). Such a
separation can be extended to a separation(F ′

1,F
′
2) of G with V(Gi

1)⊆V(F ′
1), V(F ′

1)∩V(F2) =V(F1)∩V(F2) and
Bb ⊆ V(F ′

2) \V(F ′
1). However, such a separation would contradict the minimality of the choice ofSi . Thus the

conditions of Lemma 4.2 hold, and thewi-boundedδ -folio of Gi
2 is generic with respect toSi .

We use Proposition 2.7 to compute thewi-boundedδ -folio of G with respect toRi ∪Si ; by Proposition 2.3(2),
this can be used to compute thewi-boundedδ -folio of G with respect toRi. As |V(Gi

1)|< L, the extendedδ -folio
of Gi

1 with respect toRi ∪Si can be determined by brute force in time depending only onL. We can determine the
(unbounded) extended(δ −1)-folio of Gi

2 with respect toSi by calling FINDFOLIO (recall that we assume in this
section that Lemma 3.2 holds forδ −1 and|Si | ≤ 4δ 2 ≤ 16(δ −1)2, satisfying the conditions of Lemma 3.2). We
have shown above that the extendedwi-boundedδ -folio of Gi

2 with respect toSi is generic. Thus we have all the
information required by Prop. 2.7 at our disposal to computethewi-boundedδ -folio of G with respect toRi ∪Si.
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4.2 Case 2: Few high-degree vertices

LetU be the set of all vertices inG′ with degree at leastL; we suppose in this case that|U |< h. To determine the
extendedδ -folio of G, for every graphX on R(G), we need to determine theδ -folio of G+X. Fixing such anX,
we setG′ = G+X and proceed the following way.

We define a graphF on vertex setV(G′) \U , where two vertices are adjacent if their distance inG′ \U is
at most 2L. As the maximum degree ofG′ \U is at mostL′ = L+ |R(G)|, the maximum degree ofF is at most
(L′)2L′+1. We say that a subsetC ⊆ V(G′) \U of vertices is acluster if F[C] is connected. Observe that the
maximum number of clusters of size at mostx that contain a vertexv∈V(G′) \U can be bounded by a function
of the maximum degree ofF andx. Therefore, assumingδ , |R(G)|, andL are fixed constants, the total number of
clusters of size at most 2δ is linear in|V(G′)|. LetC1, . . . , Ct be an enumeration of the clusters of size at most 2δ .

For every 1≤ i ≤ t, let wi be a weight function onV(G′) \U defined aswi(v) = δ for v∈Ci andwi(v) = 1
otherwise. For every 1≤ i ≤ t, let us choose a separation(Gi

1,G
i
2) of G′ \U such thatCi ⊆ V(Gi

1), there is a
branch setBb with Bb ⊆ V(Gi

2) \V(Gi
1), andwi(V(Gi

1)∩V(Gi
2)) is minimum possible. It is easy to see that we

can choose the separation such that every connected component of Gi
1 contains a vertex ofCi. Let Di = V(Gi

1)
andSi =V(Gi

1)∩V(Gi
2). The separation(G′[Ci ],G′ \E(G′[Ci])) and the minimality ofwi(Si) shows thatwi(Si)≤

wi(Ci)≤ 2δ ·δ and hence|Si | ≤ wi(Si)≤ 2δ 2. Every branch set of the clique intersectsV(Gi
2), which means that

|V(Gi
2)| ≥ L. If |V(Gi

1)| ≥ L also holds, thenG′ has a small separation(G1,G2) with V(G1) =V(Gi
1)∪u, V(G2) =

V(Gi
2)∪U , and|V(G1)∩V(G2)| = |V(Gi

1)∩V(Gi
2)|+ |U | ≤ s, which we can return. Thus in the following, we

can assume that|Di|< L.
We say that two clustersCi1 andCi2 areindependentif there is no edge betweenCi1 andCi2 in F.

Proposition 4.3. If clusters Ci1 and Ci2 are independent, then Di1 ∩Di2 = /0.

Proof. Let us choose a vertexv∈ Di1 ∩Di2. As |Di1|< L and the component ofGi1
1 containingv contains a vertex

of Ci1, vertexv is at distance at mostL from some vertex ofCi1 in Gi1
1 , and therefore inG′ \U . Similarly, v is at

distance at mostL from some vertex ofCi2 in G′ \U . Thus there is an edge inF between a vertex ofCi1 and a
vertex ofCi2, a contradiction.

Definition 4.4. We say that clustersCi1 andCi2 areequivalentif there is a rooted isomorphism between the graphs
G[Di1 ∪U ] andG[Di2 ∪U ] that is the identity onU , mapsSi1 to Si2, and mapsCi1 toCi2.

The following proposition is easy to prove:

Proposition 4.5. The number of equivalence classes of the clusters can be bounded by a function ofδ and L.

As we shall see, the topological minor is realized by a small number of clusters and paths connecting them.
The following definition tries to capture which paths are inside a cluster and which paths are between clusters.

Definition 4.6. Let H be a rooted graph. Aschemeof H is a pair(H ′,H ′
∗) of rooted graphs, where

(1) H ′ is a subdivision ofH (the new vertices are not roots),
(2) H ′

∗ is a subgraph ofH ′, and
(3) every vertex ofV(H ′

∗)\V(H) has degree at most 1 inH ′
∗.

For everyr-tupleC = (Ci1, . . . ,Cir ) of clusters, we defineCC =
⋃r

i=1Ci j , DC =
⋃r

i=1 Di j , andSC =
⋃r

i=1 Si j . We
define two graphs:GC

1 = G′[U ∪DC] andGC
2 = G′ \ (DC \SC). Note that(GC

1 ,G
C
2) is a separation ofG. We also

define a weight functionwC onV(G) that isδ on every vertex ofU ∪CC and 1 on every other vertex.

Definition 4.7. Let H be a rooted graph and let(H ′,H ′
∗) be a scheme ofH. Let C = (Ci1, . . . ,Cir ) be anr-tuple of

clusters. We say that this tuplerealizesthe scheme(H ′,H ′
∗) if H ′ \E(H ′

∗) has a modelφ in GC
1 such that

(1) every vertex ofV(H) is mapped toU ∪CC,
(2) every vertex ofV(H ′

∗) is mapped toU ∪SC , and
(3) for everye∈ E(H ′)\E(H ′

∗), the internal vertices ofφ(e) are not inU ∪SC.
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Roughly speaking, what we want to show is thatH is a topological minor ofG if and only if there is a tuple
of independent clusters that realizes a scheme ofH (Lemmas 4.8 and 4.10). Therefore, deciding whetherH is
a topological minor essentially reduces to finding a tuple ofindependent clusters that realize a given scheme of
H. As the clusters can be classified into a bounded number of equivalence classes, the main difficulty is to find
independent clusters of given types, which can be solved using standard techniques.

We first prove that if a rooted graphH has model inG′, thenH has a scheme that realized by some tuple of
clusters. We hope the proof sheds light on why schemes are defined this way.

Lemma 4.8. Let H be a rooted graph in theδ -folio of G′. Then there is a scheme(H ′,H ′
∗) of H with |V(H ′)| ≤

4δ +2δ 2 and a tupleC = (Ci1, . . . ,Cir ) of pairwise independent clusters with r≤ 2δ that realizes(H ′,H ′
∗).

Proof. Let φ be a model ofH in G′. Let C = {φ(v) | v ∈ V(H)} \U . Each connected component ofF[C] is a
cluster; letC = (Ci1, . . . ,Cir ) be these connected components. Clearly, these clusters arepairwise independent and
r ≤ |V(H)| ≤ 2δ . Due to a minor technical detail, we need to handle some vertices ofSC ∪U in a special way. We
defineX to contain a vertexv∈ SC ∪U if v is an internal vertex ofφ(e) for somee∈ E(H) and both neighbors of
v in φ(e) are inV(GC

2).
If for somee∈ V(H), pathφ(e) containsm internal vertices in(SC ∪U) \X, then let us subdividee with

m new (non-root) vertices; letH ′ be the rooted graph obtained this way. As|SC ∪U | ≤ 2δ 2 + 2δ , we have
|V(H ′)| ≤ 4δ +2δ 2. The modelφ gives a modelφ ′ of H in G the obvious way (every new vertex of the subdivision
is mapped to a vertex in(SC ∪U) \X). Let H ′

∗ be the subgraph ofH ′ that contains those verticesv for which
φ ′(v) ∈ (SC ∪U)\X and those edgese for which φ ′(e) is fully contained inGC

2 .
We claim that(H ′,H ′

∗) is a scheme ofH andC realizes this scheme. Conditions 1 and 2 of Definition 4.6 are
easy to verify. To check condition 3, suppose that vertexv∈V(H ′

∗)\V(H) has degree more than 1. Since vertexv
was obtained as the subdivision of an edgee∈ E(H), vertexv has degree exactly 2 inH ′

∗ andφ ′(v) ∈ (SC ∪U)\X.
Let e1 ande2 be the two edges incident tov in H ′

∗. By definition ofH ′
∗, φ ′(e1) andφ ′(e2) are fully contained in

GC
2 . Thus the two neighbors ofφ(v) in φ(e) are both inV(GC

2), implying thatφ(v) ∈ X, a contradiction.
Finally, we show thatφ ′ defines a model ofH ′ \E(H ′

∗) in GC
1 satisfying the conditions of Definition 4.7. Let

us verify that the images of the vertices and edges are indeedin GC
1 . It is clear thatφ ′(v) ∈ V(GC

1) for every
v∈V(H ′). Let us prove thatφ ′(e) is fully contained inV(GC

1) for everye∈ E(H ′)\E(H ′
∗). In fact, we show that

φ ′(e) has no internal vertex inV(GC
2). Suppose thatφ ′(e) has an internal vertexu2 ∈V(GC

2). As e 6∈ E(H ′
∗), path

φ ′(e) contains a vertexu1 ∈V(GC
1) \V(GC

2) (u1 can be an endpoint ofφ ′(e)). Going fromu1 to u2 on φ ′(e), let
u be the first vertex ofV(GC

2); clearly,u∈ S∪U andu 6= u1. Now u is an internal vertex ofφ ′(e), and the vertex
precedingu is not inV(GC

2). Thusu∈ (SC ∪U)\X, which means thatu should be the image of a vertex ofH ′ in
φ ′, a contradiction. Therefore,φ ′(e) has no internal vertex inV(GC

2) and in particularφ ′(e) is fully contained in
V(GC

1) for everye∈ E(H ′)\E(H ′
∗). This means thatφ ′ is indeed a model ofH ′\E(H ′

∗) in GC
1 and we also verified

condition 3 of Definition 4.7. Conditions 1 and 2 are straightforward to check.

We prove now the converse of Lemma 4.8. We show first that thewi-bounded folio ofGC
2 is rooted-generic

(Lemma 4.9). Then we use this fact to route the edges ofH ′
∗ when constructing a model ofH ′ in G′ (Lemma 4.10).

Lemma 4.9. Let C = (Ci1, . . . ,Cir ) be a tuple of pairwise independent clusters. Either the wC-bounded wC(SC)-
folio of GC

2 with respect to U∪SC is rooted-generic (and we can find a model of every graph in thefolio), or we
can find a separation(G′

1,G
′
2) of G′ with |V(G′

1)|, |V(G′
2)| ≥ L and |V(G′

1)∩V(G′
2)| ≤ s.

Proof. If the conditions of Lemma 4.2 hold forGC
2 , wC , and set of rootsU ∪SC , then we are done. Suppose

therefore that there is a separation(F1,F2) of GC
2 violating the conditions of Lemma 4.2. There is a corresponding

separation(G′
1,G

′
2) of G′ with V(F1)∩V(F2) =V(G′

1)∩V(G′
2), V(G′

1) ⊆V(F1), andV(G′
2) = V(F2). Let S′ =

V(F1)∩V(F2) =V(G′
1)∩V(G′

2), it is clear that|S′| ≤ wC(U ∪SC)≤ s. AsBb ⊆V(G′
2), we also have|V(G′

2)| ≥ L.
If |V(G′

1)| ≥ L, then we can return the small separation(G′
1,G

′
2). Thus in the following, we can assume that

|V(G′
1)| ≤ L. In particular, this means thatU ⊆ S′: if u∈V(G′

1)\V(G′
2) for someu∈U , then every neighbor ofu

is inV(G′
1) and|V(G′

1)| ≥ L follows.
Let S′i j

be the set of those vertices ofS′ \U that can be reached fromSi j ⊆ V(G′
1) \U by a path inG′

1 \U .
We claim that these sets are pairwise disjoint forj = 1, . . . , r. Suppose without loss of generality that there is a
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vertexv∈ S′i1 ∩S′i2. This means that there is a vertexv1 ∈ Si1 and a vertexv2 ∈ Si2 that are in the same connected
componentK of G′

1 \U asv. Note thatDi1 andDi2 are fully contained inG′
1 \U , thus there is a vertexc1 ∈ Ci1

and a vertexc2 ∈Ci2 in this connected componentK. As clustersCi1 andCi2 are independent by assumption, the
distance ofc1 andc2 is at least 2L in G′

1\U , which means that|V(G′
1)| ≥ 2L, a contradiction.

AsU , S′i1, . . . , S′ir are pairwise disjoint andU ⊆ S, the only waywC(S′)< wC(S) is only possible ifwC(S′i j
)<

wC(Si j ) for some 1≤ j ≤ r. However, in this case there is a separation(G
i j

1 ,G
i j

2 ) of G′ \U with V(G
i j

1 )∩V(G
i j

2 ) =

S′i j
, Di j ⊆V(G

i j

1 ), andBb ⊆V(G
i j

2 )\V(G
i j

1 ) for some branch setBb. This contradicts the minimality of the choice
of Si j .

Lemma 4.10. Let H be a rooted graph and(H ′,H ′
∗) be a scheme of H. LetC = (Ci1, . . . ,Cir ) be an r-tuple of

pairwise independent clusters that realizes(H ′,H ′
∗). Then we can find either a model of H in G′ or a separation

(G′
1,G

′
2) of G′ with |V(G′

1)|, |V(G′
2)| ≥ L and |V(G′

1)∩V(G′
2)| ≤ s.

Proof. Let φ be a model ofH ′ \E(H ′
∗) in GC

1 , as in Definition 4.7. SinceGC
1 is a subgraph ofG′, φ can be

considered as a model ofH ′ \E(H ′
∗) in G′. We try to extendφ to a model ofH ′ in G′ by assigning values toφ(e)

for everye∈ E(H ′
∗). In order to do this, let us make every vertex ofU ∪SC a rootGC

2 , and letH ′′
∗ be obtained from

H ′
∗ by making every vertexva root with the same root number asψ(v). We try to find awC-bounded modelψ of H ′

∗

in GC
2 . Note that Definition 4.7 ensures that such aψ respects the degree condition: for everyv∈V(H ′

∗)∩V(H),
we haveψ(v) ∈U ∪SC and hencewC(ψ(v)) = δ , while the degree of everyv∈V(H ′

∗)\V(H) is at most 1 inH ′
∗.

We use Lemma 4.9 to find either a small separation(G′
1,G

′
2), or a modelψ of H ′′

∗ in GC
2 with ψ(v) = φ(v) for

everyv ∈ V(H). If Lemma 4.9 gives us a separation, then we are done. Otherwise, let us setφ(e) = ψ(e) for
everye∈ E(H ′

∗). The pathsφ(e) for e∈ E(H ′
∗) are pairwise internally disjoint: this follows from the fact that if

e∈ E(H ′
∗), then the internal vertices ofφ(e) = ψ(e) are inV(GC

2), while for everye∈ E(H ′)\E(H ′
∗), the internal

vertices ofφ(e) are not inV(GC
2) (by Definition 4.7(3)). Thusφ is indeed a model ofH ′.

Having established the correspondence between topological minors and tuples of clusters realizing a scheme,
we concentrate on finding such a tuple. We observe that only the equivalence types of the clusters matter:

Proposition 4.11. Let H be a rooted graph and(H ′,H ′
∗) be a scheme of H. Let(Ci1, . . . ,Cir ) and(Ci′1

, . . . ,Ci′r ) be
two r-tuple of clusters such that(Ci1, . . . ,Cir ) realizes(H ′,H ′

∗) and for every1 ≤ j ≤ r, clusters Ci j and Ci′j
are

equivalent. Then(Ci′1
, . . . ,Ci′r ) also realizes(H ′,H ′

∗).

The following lemma is standard: it shows that finding small fixed-size “colorful” independent sets in bounded-
degree graphs can be done in linear time.

Lemma 4.12. Let W be a graph with maximum degree d where the vertices are labeled with k different labels. We
can find in time f(d,k) · (|V(W)|+ |E(W)|) an independent set of size k where every vertex has a different label
(or correctly state that there is no such set).

Lemma 4.13. Given a scheme(H ′,H ′
∗) with |V(H ′)| ≤ 4δ +2δ 2, in time f(δ ,L)|V(G)| (for some function f(δ ))

we can find a tupleC = (Ci1, . . . ,Cir ) of clusters with r≤ 2δ that realizes(H ′,H ′
∗) (if such a tuple exists).

Proof. Let us enumerate all clusters and sort them into equivalenceclasses (where equivalence is understood
according to Definition 4.4). Lett be the number of equivalence classes and let us assign an integerτ(Ci) ∈ [t] to
each clusterCi based on which class it belongs to. For every subsetT ⊆ [t] of size at most 2δ , we test whether there
is a tuple(Ci1, . . . ,Ci|T|) of pairwise independent clusters with{τ(Ci1), . . . ,τ(Ci|T|)} = T. In order to do this, we
build a graphWT by introducing a vertex with labelτ(Ci) corresponding to every clusterCi with τ(Ci) ∈ T. Two
vertices ofWT are adjacent if the corresponding clusters arenot independent. We claim that the maximum degree
of WT can be bounded by a function ofδ andL. To see this, recall that the maximum degree ofG\U is at mostL
and that the maximum distance inG\U between two vertices of a clusterCi is O(δL) (asCi induces a connected
subgraph ofF). Thus ifCi andCj are not independent, thenCj is fully contained in theO(δL)-neighborhood of
every vertex ofCi; the number of such sets can be bounded by a function ofδ andL. This means that if we use
Lemma 4.12 to find a colorful independent set inWT , then the running time is linear in the number of clusters (for
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fixed δ andL). If Lemma 4.12 returns an independent set, then we test if the corresponding pairwise independent
tupleC = (Ci1, . . . ,Ci|T |

) of clusters realizes(H ′,H ′
∗) (as the size ofGC

1 is bounded by a function ofδ andL, this
can be done by brute force). If after trying everyT ⊆ [t] of size at most 2δ , no tuple realizing(H ′,H ′

∗) is found,
then by Proposition 4.11 we know that there is no tuple realizing (H ′,H ′

∗).

In Case 2 (|U | < h), our algorithm for FIND IRRELEVANTORSEPARATION determines theδ -folio of G′ =
G+X the following way. For every candidateH in the δ -folio, we enumerate every scheme(H ′,H ′

∗) of H with
|V(H)| ≤ 4δ + 2δ 2 (the number of such schemes is clearly bounded by a function of δ ). For each scheme, we
use Lemma 4.13 to check if there is a tuple of clusters that realizes this scheme. If there is such a tuple, then
by Lemma 4.10, we can obtain a model ofH in G′ or a small separation; if there is no such tuple, then the
(contrapositive) of Lemma 4.8 shows thatH ′ is not a topological minor ofG′. It is easy to verify that for fixedδ
andL, the running time isO(|V(G)|2).

5 No clique case

It remains to prove Theorem 3.3. Let us recall the statement.

There is an algorithm satisfying the specification of FIND IRRELEVANTORCLIQUE that runs inf1(δ , |R(G)|,k) ·
|V(G)| steps, for some computable functionf1.

Throughout the proof of Theorem 3.3, we will have to analyze instances of topological minors. To do so, we
will typically think of the topological minor as given as a set of internally disjoint paths. To make this explicit,
we define apath systemto be a setP = {P1, . . . ,Pk} of internally disjoint paths. We allow that an elementPi of
a path system is trivial, however in this case, we require that ∄ j such thatV(Pi) ⊆V(Pj). Thus every trivial path
Pi of P forms a 1-vertex component of the graph

⋃k
i=1 Pi. A special type of path system which we will frequently

consider is alinkagewhere the elements of the system are pairwise vertex disjoint. We will useV(P) andE(P)
to refer to the vertex and edge sets of the graph

⋃k
i=1Pi. Finally, we say that a path systemQ is equivalentto P if

they have the same order and for every elementP∈ P there exists an elementQ∈ Q such thatP andQ have the
same endpoints.

This section is organized as follows. In the next subsection, we give a key result, the so-called “weak structure
theorem”, which also plays an important role in the the graphminor algorithm by Robertson and Seymour [11].
We will need a stronger version of the theorem with an additional property ensuring that for any “piece” of a
topological minor in the structure, one can find many disjoint copies of this piece. The exact statement of this
stronger version will require additional notation, which we present in the second subsection before stating the
theorem. In Subsection 5.3, we state the main theorem, Theorem 5.9, of this section, and present the proof of
Theorem 3.3 assuming Theorem 5.9. The proof of Theorem 5.9 will occupy the rest of the section. We introduce
the Unique linkage theorem in Subsection 5.4. In Subsection5.5, we give several technical lemmas on path
systems in graphs almost embedded in the disc or in the cylinder. Finally, in Subsection 5.6, we give the proof of
Theorem 5.9.

5.1 The weak structure theorem

For our proof, we will need to consider what Robertson and Seymour dubbed societies. Asocietyis a pair(G,Ω)
whereG is a graph andΩ is a cyclic ordering of a subset of the vertices ofG. In a slight abuse of notation, we will
useΩ to refer both to the set of vertices as well as the cyclic ordering.

We will often restrict our attention to societies which can be nearly embedded in the plane.

Definition 5.1. A society (G,Ω) embeds in the disc up to 3-separationsif there exist pairwise edge disjoint
subgraphsG0,G1, . . . ,Gm for some non-negative integermwhich satisfy the following.

i. G=
⋃m

0 Gi andΩ ⊆V(G0).
ii . |V(G0)|∩V(Gi)| ≤ 3 for all 1≤ i ≤ mandV(Gi)∩V(G j)⊆V(G0) for all 1≤ i < j ≤ m.
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iii . For all 1≤ i ≤mand distinct verticesx,y∈V(Gi)∩V(G0), there exists a pathP in Gi from x to y intersecting
V(Gi)∩V(G0) exactly in the verticesx andy.

iv. If we let D be the closed unit disc, then for all 1≤ i ≤ m, there exist pairwise disjoint open discs∆i ⊆ D and
an embeddingσ : G →֒ D− (

⋃m
1 ∆i) such that

a. the vertices ofG0 embedded on the boundary ofD are exactly the vertices ofΩ in the cyclic order
indicated byΩ, and

b. for every 1≤ i ≤ m, the vertices ofG0 embedded on the boundary of∆i are exactly the vertices of
V(Gi)∩V(G0).

We define the graphG′
0, called theclosure of G0, to be the graph obtained fromG0 by adding an edge between

every non-adjacent pair of verticesu andv such that there exists an indexi with u,v∈V(G0)∩V(Gi).

We will often consider a society(G,Ω) embedded in the disc up to 3-separations with a minimal number
of edges with respect to some desirable property. The next observation lays out whenG− e embeds up to 3-
separations as well. The proof follows immediately from thedefinition and we omit it here.

Remark5.2. Let (G,Ω) be a society which embeds in the disc up to 3-separations, andlet ({G0,G1, . . . ,Gm},σ ,{∆1, . . . ,∆m})
be a fixed embedding up to 3-separations of(G,Ω). If e∈ E(G0), then({G0−e,G1, . . . ,Gm},σ ′,{∆1, . . . ,∆m}) is
an embedding up to 3-separations of(G−e,Ω) whereσ ′ is the restriction ofσ to the graphG0−e. If e∈ E(Gi)
for i ∈ {1, . . . ,m}, then({G0,G1, . . . ,Gi −e, . . . ,Gm},σ ,{∆1, . . . ,∆m}) is an embedding up to 3-separations if and
only if e is not a cut edge separating vertices ofV(Gi)∩V(G0) in Gi. In general, for alle∈ E(G), the society
(G−e,Ω) embeds in the disc up to 3-separations, although it might be necessary to modify a given embedding of
(G,Ω) to obtain one for(G−e,Ω).

We will need some somewhat technical notation for describing sets of cycles in societies embedded up to
3-separations. Let(G,Ω) be a society and let({G0,G1, . . . ,Gm},σ ,{∆1, . . . ,∆m}) be an embedding of the society
in the disc up to 3-separations. A cycleC in G is groundedif V(C)∩V(G0) ≥ 3. If we consider a grounded
cycleC, then the subgraphC∩G0 is either a cycle where every edge ofC is contained inG0 or it is a union of
(possibly trivial) disjoint paths. In the case where it is a union of disjoint paths, we can label the components
P0, . . . ,Pl−1 for some positive integerl and label the endpoints ofPi asxi andyi for 1≤ i ≤ l such that the vertices
x0,y0,x1,y1, . . . ,xl−1,yl−1 occur onC in that order when traversing the cycle. In the case thatPi is a trivial path,
we let xi = yi . For every indexi, 0≤ i ≤ l − 1, there exists an indexj and a path, call itQi, such thatxi andyi

are contained inV(G j)∩V(G0) and the pathQi is a subpath ofG j linking yi andxi+1 with the subscript notation
taken modulol . While it is possible that two pathsQi andQi′ will be contained in the same subgraphG j of the
decomposition, they will be internally disjoint, possiblyintersecting only in one vertex ofV(G j)∩V(G0). We
define the cycleC̄ in the closure ofG0 obtained by restrictingC to the vertices ofG0 and replacing each missing
subpathQi contained inC−E(G0) by an edge ofE(G′

0)\E(G0), whereG′
0 again is the closure ofG0. Call C̄ the

projection of C to G′0. Note that the requirement that|V(C)∩V(G0)| ≥ 3 ensures that̄C is a well defined cycle of
G′

0.
For the grounded cycleC, the projectionC̄ of C to G′

0 defines a closed subdisc∆c of the disc. LetGc
0 be the

induced subgraph ofG0 with vertices in∆c. We letm′ be a positive integer andGc
1, . . . ,G

c
m′ be the (re-labeled)

set of{Gi : V(Gi)∩V(G0)⊆ (V(Gc
0))}. Let Gc be the subgraph ofG given byGc = Gc

0∪
⋃m′

i=1Gc
i . Let Ωc be the

natural cyclic order ofV(C̄). We refer to the society(Gc,Ωc) as theembedding-induced societyof the grounded
cycleC. Observe that the embedding up to 3-separations of(G,Ω) immediately yields an embedding up to 3-
separations of(Gc,Ωc). Note, it is possible that the cycleC is not contained inGc, specifically when there exists
a G j with |V(G j)∩V(G0)| = 3 containing a subpath ofC such that exactly two vertices ofG j are contained in
V(Gc) and one vertex is “outside” the disc bounded byC̄. In this case, if we letΩc

2 be the natural cyclic order of
the verticesV(C) given byC, then(Gc∪C,Ωc

2) has an embedding up to 3-separations as well.
We will be specifically interested in embeddings up to 3-separations which contain a large grid-like graph.

Towards this end, we now considerwalls.
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For positive odd integersr, define a graphHr (called thebasic r-wall) as follows. LetP0, . . . ,Pr be r vertex
disjoint paths of length 2r +1, sayPi = vi

0 . . .v
i
2r+1. LetV(Hr) =

⋃r
i=1V(Pi)\{v0

0,v
r
2r+1}, and let

E(Hr) =

(

r
⋃

i=1

E(Pi)\{v0
0v0

1,v
r
2rv

r
2r+1}

)

∪
{

vi
jv

i+1
j : i odd, j even; 1≤ i < r; 0≤ j ≤ 2r +1

}

∪
{

vi
jv

i+1
j : i even, j odd; 0≤ i < r; 1≤ j ≤ 2r +1

}

.

Note that the restriction ofr to be even ensures that the indices are more nicely behaved. The 6-cycles inHr are
its bricks. In the natural plane embedding ofHr , these bound its ‘finite’ faces. The outer cycle of the unique
maximal 2-connected subgraph ofHr is theboundary cycleof Hr . The pathsP0, . . . ,Pr are called thehorizontal
pathsof the wall. Let the pathQi for 0≤ i ≤ r be the path ofHr induced by the set of vertices{v2i

j ,v
2i+1
j : 1≤ j ≤

r −1}∪{v2i
0 ,v

2i+1
r }. TheQi will be called thevertical pathsof the wall.

The cycleC of Hr is a rectangleif C is a subgraph of the union of exactly two horizontal and two vertical
paths ofHr . Note that the bricks as well as the boundary cycle ofHr are rectangles. Thediameterof a rectangle
contained in the union ofPi,Pi′ ,Q j ,Q j ′ is the max{|i − i′|, | j − j ′|}. Thus the rectangles of diameter 1 are exactly
the bricks ofHr .

Any subdivisionH of Hr will be called anr–wall or a wall of size r. Thebricks andboundary cycleof H
are its subgraphs that form subdivisions of the bricks and boundary cycle, respectively. Recall that to dissolve a
vertex of degree 1 or 2 in a graph, we simply contract an incident edge. Given such a wallH of sizer, let X be a
subset of vertices ofH containing every vertex of degree 3 inH such that dissolving every vertex of degree two
in V(H) \X results in the graphHr . Call such a setX of verticespegsof the wall. We can label the set of pegs
v j

i , 0≤ i ≤ 2r +1 0≤ j ≤ r according to their position in the wall after suppressing the vertices of degree two in
V(H)\X. Call such a labeling thecanonical labeling of the pegs. Given a set of pegs of a wallH, the horizontal
and vertical paths of a wallH are the subdivided paths ofHr corresponding to the horizontal and vertical paths of
Hr . We let the rectangles be the cycles ofH forming the subdivisions of the rectangles ofHr .

Definition 5.3. Let r andt be positive integers. Anearly flat r-wall decomposition with apex bound tof a graph
J is given by a 5-tuple(A,G,H,W,X) such thatA⊆V(J), G andH are subgraphs ofJ, W is anr-wall in J andX
is a set of pegs ofW which satisfy the following. LetC be the boundary cycle ofW.

i. J−A= G∪H andW is a subgraph ofG.
ii . V(H)∩V(G)⊆V(C), and if we letΩ be the natural cyclic order ofV(H)∩V(G) given by the cycleC, the

society(G,Ω) has an embedding up to 3-separations{{G0,G1, . . . ,Gm},σ ,{∆1, . . . ,∆m}}.
iii . The setX of pegs is contained inV(G0).
iv. |A| ≤ t and for everyx∈ A and every brickB of W, x has a neighbory in the embedding induced society of

the brickB and there exists a path fromy to B in the embedding induced society.

The goal of this subsection is to present a theorem saying when we can find a large nearly flat wall decompo-
sition. Essentially, we will see that we can always find such adecomposition or the graph must havebounded tree
width or a largeclique minor. We remind the reader that a graphG containsKt as a minor if there exist pairwise
disjoint subsetsX1, . . . ,Xt of vertices such thatG[Xi] is connected for all 1≤ i ≤ t and for all 1≤ i < j ≤ t, there
exists an edge with one endpoint inXi and one endpoint inXj . These sets are referred to as thebranch setsof the
minor.

Finally, we will refer to thetreewidthof a graphG, denotedtw(G). However, we will not need the technical
definition here and so omit it.

We are now ready to give the weak structure theorem.

Theorem 5.4 (Weak Structure Theorem, [11], Theorem (9.4)).For all t ≥ 1, r even, there exists a value
w = w(t, r) such that the following holds. Let J be a graph on n vertices oftreewidth at least w. There exists
an O(|V(G)|) time algorithm that outputs either sets of vertices{X1,X2, . . . ,Xt} forming a Kt minor or outputs
(A,G,H,W,X) forming a nearly flat r-wall decomposition with apex bound t2.
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Note that Robertson and Seymour [11] gives anO(V|(G)|2) time algorithm to output either the nearly-flat
r-wall decomposition or aKt minor. The time complexity is improved in [8] toO(|V(G)|).

5.2 Strengthening Theorem 5.4

In this subsection, we present a strengthening of the weak structure theorem which will allow us to find an irrele-
vant vertex.

We will first need some notation describing sets of cycles in societies embedded up to 3-separations.

Definition 5.5. Let (G,Ω) be a society and let({G0,G1, . . . ,Gm},σ ,{∆1, . . . ,∆m}) be an embedding of the society
in the disc up to 3-separations. Ans-nestis a setC = {C1,C2, . . . ,Cs} of disjoint cycles which satisfy the following.

i. For all 1≤ i ≤ s, Ci is grounded.
ii . For all 1≤ i ≤ s, let C̄i be the projection ofCi to G′

0. Then for all j > i, the verticesV(C̄j) are contained in
the subdisc bounded bȳCi . 1

As with path systems, we will useE(C) to refer to the edge set
⋃

C∈C E(C) andV(C) for the vertex set
⋃

C∈CV(C).

Definition 5.6. Let C = {C1, . . . ,Cs} be a set ofs disjoint cycles in a graphG. We say the path systemP =
{P1, . . . ,Pk} is perpendicular toC if the following conditions hold for all 1≤ i ≤ k.

i. For all i and j, if V(Pi)∩V(Cj) 6= /0, then for all j ′, 1≤ j ′ ≤ s, V(Pi)∩V(Cj ′) 6= /0.
ii . There does not exist an elementPi ∈ P containing verticesx,y,z such that when traversingPi from one end

to the other we encounterx,y,z in that order and distinct indicesj, j ′ such thatx,z∈V(Cj) andy∈V(Cj ′).
iii . For all indicesi, 1≤ i ≤ k and for all j, 1≤ j ≤ s, Pi ∩Cj is a (non-empty) subpath ofCj .

We say thatP is nearly perpendicularif it satisfiesi andii .

We will need to define a canonical set of concentric cycles foreach rectangle. Let(A,G,H,W,X) be a nearly
flat wall decomposition, and letC be a rectangle of W, and letd be a positive integer. Thed-target centered at C
is ad-nest{C1,C2, . . . ,Cd} satisfying the following

i. For all 1≤ i ≤ d, Ci is a rectangle ofW.
ii . For all 1≤ i ≤ d, the embedding induced society ofCi contains bothC andCj for all j > i.
iii . With respect toi andii , C1, . . . ,Cd are chosen to minimize the embedding induced society ofCd.

Thus, ad-target centered atC can be thought of as the nextd rectangles surroundingC in the wall decomposition.
Note that thed-target is in fact uniquely determined byC.

We are now ready to present the additional property which we will add to Theorem 5.4. We define what we
will call a pattern in a nearly flat wall decomposition. A pattern can be thought of as a piece of a topological
minor in a graph admitting a nearly flat wall decomposition such that this piece has the additional property that it
intersects nicely with a given nest contained in the wall.

Definition 5.7. Let r, l , andk be positive integers. LetJ be a graph, and let(A,G,H,W,X) be a nearly flatr-wall
decomposition ofJ. LetC be a rectangle. Apattern centered at Cof orderk and depthl consists of a path system
P of order k satisfying the following properties. Let{C1, . . . ,Cl} be thel -target centered atC. Let JC be the
subgraph ofJ given by the union of the embedding induced society ofC and all the edges with one endpoint in
the embedding induced society and one endpoint inA. Similarly defineJC1. ThusJC1 contains all thel -target
{C1, . . . ,Cl}.

i. The path systemP is contained in the subgraphJC1.
ii . For all P∈ P, P has no internal vertex contained inA.
iii . For all P∈ P, if P∩ (V(JC1) \V(JC)) 6= /0 thenP has exactly one endpoint inV(JC), the other endpoint in

V(C1), andP is perpendicular to{C1,C2, . . . ,Cl}. 2

1Thus the “inner” cycle isCs and the “outer” cycle isC1.
2Note we have to modify the definition of perpendicular to allow paths that don’t have both endpoints contained in the nest
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Note, specifically we require that thel -target centered atC be defined.
Let l andk be positive integers and letP andP ′ be patterns of orderk and depthl centered at the rectanglesC

andC′, respectively. Let the set of endpoints of elements ofP andP ′ beSandS′, respectively. We say thatP is
homeomorphicto P ′ if there exists bijectionsπ1 : S→ S′ andπ2 : P →P ′

i. For all x∈ (S∪S′)∩A, π1(x) = π−1
1 (x) = x.

ii . For all P∈ P with endpointsx andy, the endpoints ofπ2(P) areπ1(x) andπ1(y).

Moreover, if we fix an orientation of the embedding ofG in the plane and label it clockwise, we have the following
property.

iii . If we let x1, . . . ,xt be the vertices ofS∩V(C1) so that they occur in that clockwise order onV(C1), then
π1(x1), . . . ,π1(xt) occur onC′

1 in that clockwise order.

We are now give the following strengthening of the weak structure theorem.

Theorem 5.8. For all positive integers t,δ , l ,d ≥ 1 and r even, there exists a value w= w(t,δ , l ,d, r) such that
the following holds. Let J be a graph on n vertices with tw(J)≥ w. There exists an O(|V(G)|) time algorithm that
outputs either the branch sets of a Kt minor or outputs(A,G,H,W,X) forming a nearly flat r-wall decomposition
with apex bound t2 with the following property.

v. For all rectangles C of diameter at most d admitting an l-target and for every patternP centered at C of
depth l and order at mostδ we have that for every brick B admitting an l-target there exists a patternP ′

centered at B of depth l which is homeomorphic toP.

Again, Robertson and Seymour [11] give anO(V|(G)|2) time algorithm to output the structure in Theorem
5.8; the complexity was improved toO(|V(G)|) in [8]. The structure guaranteed by Theorem 5.8 is very similar to
the one defined in [11], which is called a “homogeneously labeled wall”. This wall has many “similar”, disjoint
subwalls, each of which can play an equivalent role with respect to the folio. The exact statement of Property v. in
Theorem 5.8 is derived to be more friendly to maintaining topological subgraphs. An algorithm to construct the
structure given in Theorem 5.8 can be easily obtained from Theorem 5.4. In fact, (10.1) in [11] is almost exactly
the statement above, however we must modify the structure slightly in order to ensure that conditionv. holds.
Given the structure in Theorem 5.4 and the algorithm of (10.1) in [11], it is straightforward to obtain anO(n) time
algorithm to find the structure as in Theorem 5.8 (the statement follows from a typical Ramsey type argument as
in the proof of (10.1) in [11]. We omit the proof here).

5.3 Proof of Theorem 3.3

In this subsection, we present the proof of Theorem 3.3. Our primary tool in doing so is the following which
connects the structure given in Theorem 5.8 to the existenceof irrelevant vertices. Recall from Section 3 that a set
X of vertices isirrelevant to theδ -folio of G, if rooted graphsG andG\X have the sameδ -folio. We say that a
vertexv is irrelevant if the set{v} is irrelevant.

Theorem 5.9. Let δ and t be positive integers. There exist values r= r(δ , t), d = d(δ , t), and l= l(δ , t), which
satisfy the following. Let J be a rooted graph with roots R(J). Assume that J admits a nearly flat r-wall decom-
position(A,G,H,W,X) with apex bound t satisfying properties i-v. Assume that R(J)∩V(G) = /0. Finally, let the

pegs have the canonical labeling. Then the peg vr/2
r is irrelevant to theδ -folio of J.

Note that algorithmically, given ther-wall decomposition in the statement of Theorem 5.9, it is trivial to output
the pegvr/2

r in constant time. The proof of Theorem 5.9 will occupy the remainder of this section; we delay the
proof until the later subsections and continue with the proof of Theorem 3.3.

The second result which we will need is the following, showing theδ -folio can be solved in polynomial time
if the treewidth is bounded.

Theorem 5.10 (See [1, 11]).For integers w andδ , there exists a(w+ δ )O(w+δ )O(|V(G)|) time algorithm for
computing theδ -folio in graphs of treewidth w.
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We are now give the algorithm for Theorem 3.3, satisfying thespecifications of FIND IRRELEVANTORCLIQUE

defined in Section 3.
Let J be our graph with rootsR(J) and constantsδ andk be given as input. Fixr = r(δ ,k2), d = d(δ ,k2), and

l = l(δ ,k2) from Theorem 5.9. Letr ′ = |R(J)|r, and letw= w(k,δ ,d, l , r ′) as in Theorem 5.8.

Step 1. The small treewidth case.As a first step, test whether or notJ has treewidth at leastw. This can be
done by the algorithm of Bodlaender [2]. IfJ does havetw(J)≤ w, then apply Theorem 5.10 to obtain theδ -folio.
Otherwise, go to Step 2.

Step 2. Apply the weak structure theorem.Apply Theorem 5.8 toJ with t = k. The algorithm either outputs
the branch sets of aKk minor, or we find the structure(A,G,H,W,X) forming a flatr ′-wall decomposition with
apex boundk2. Go to Step 3.

Step 3. Find an irrelevant vertex. We would like to apply Theorem 5.9 to output an irrelevant vertex. As
a final technicality, it is possible that there are roots ofR(J) contained in the subgraphG of the decomposition.
However, by our choice ofr ′, there exists anr-subwallW′ of W with boundary cycleC′ such that the embedding
induced societyG′ of C′ does not contain any vertices ofR(J). Let H ′ and X′ be accordingly defined so that
(A,G′,H ′,W′,X′) forms a flatr-wall decomposition withR(J)∩V(G′) = /0. Note that we can find such a subwall
W′ in linear time. Apply Theorem 5.9 to the decomposition(A,G′,H ′,W′,X′) to obtain an irrelevant vertex, which
we then output.

Let us clarify the time complexity of this algorithm. Step 1 can be done inO(|V(G)|) time because we apply
Theorem 5.10 and the algorithm of Bodlaender [2], and both run in O(|V(G)|) time. Step 2 can be done in
O(|V(G)|) time by Theorem 5.8. Step 3 can be done inO(|V(G)|) time by Theorem 5.9. Thus the overall runtime
is O(|V(G)|), as desired.

Thus, all that remains is to prove Theorem 5.9. We do so in several steps. In the next two subsections, we give
several auxiliary results before presenting the proof of Theorem 5.9 in subsection 5.6. Let us emphasize here that
our proof of Theorem 5.9 does not depend on the full power of the graph minor structure theorem [12]. We can
avoid the structure theorem, because there is now a shorter proof for the correctness of the graph minor algorithm
in [9]. Utilizing some results in [9], we are able to avoid themuch of the heavy machinery of the graph minor
structure theory.

5.4 Unique Linkage Theorem

Our primary tool in the next subsection will be a powerful theorem of Robertson and Seymour known as the
Unique linkage theorem [13].

Theorem 5.11 ([13]). For all k ≥ 1, there exists an integer w(k) satisfying the following. Let G be a graph andP
a linkage of order k contained in G such that V(G) =V(P). If tw(G)≥ w(k), then there exists a vertex v∈V(G)
and a linkageP ′ equivalent toP with V(P ′)⊆V(G)−v.

To describe the existence of such a vertexv and linkageP ′ as in Theorem 5.11, we will often say that the path
systemP can be re-routed to avoid some vertex v of G. We will need to apply Theorem 5.11 in a slightly more
general context. Towards that end, we give the following corollary.

Corollary 5.12. For all k ≥ 1, there exists an integer w(k) satisfying the following. Let G be a graph andP a
path system of order k contained in G. Let Z= {v∈V(G) : deg(v)≥ 3}. Assume that Z⊆V(P). If tw(G)≥ w(k),
then there exists a vertex v∈ Z and a path systemP ′ equivalent toP with V(P ′)⊆V(G)−v.

Proof. Assume the claim is false, and letG and a path systemP of orderk be a counterexample. LetSbe the set
of endpoints of elements ofP. Let w(k) be the function given in Theorem 5.11. We assume the treewidth of G
is at leastw(k). Assume that from all such counterexamples, we pick a counterexample minimizing 2k−|S| and
subject to this, we pick a counter example on a minimum numberof edges.

First, observe that if there exists a vertexv of degree one or two inV(G) \S, then if we letḠ be the graph
obtained by dissolvingv andP̄ the path system obtained by dissolvingv, then by our choice of counterexample,
there exists a path system equivalent toP̄ avoiding some vertex of degree three. This path system will correspond
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to a linkage inG which is equivalent toP and avoids some vertex of degree 3 as well, a contradiction. Thus we
see thatV(G) =V(P) and that every vertex ofV(G)\Shas degree at least 3.

Note that if 2k− |S| = 0, thenP is a linkage and the claim follows from Theorem 5.11. Thus, wesee that
2k−|S| ≥ 1 and that there exist two elementsP1 andP2 of P sharing a common endpointv. Let G′ be the graph
obtained by deleting the vertexv and adding two verticesv1 andv2 each adjacent inG′ to every vertex of the
neighborhood inG of the vertexv, i.e. NG′(v1) = NG′(v2) = NG(v). Let P′

1 be the path inG′ obtained by adding
the vertexv1 to the subpathP1− v. For all P∈ P −P1, if v is an endpoint ofP, let P′ be the path ofG′ obtained
by addingv2 to the subpathP−v. If v is not an endpoint ofP∈ P −P1, let P′ = P, and letP ′ = {P′ : P∈ P}. By
construction, the path systemP can be rerouted inG to avoid some vertex if and only if the path systemP ′ can be
rerouted inG′ to avoid some vertex as well.

The graphG is a subgraph ofG′, and so we have thattw(G′) ≥ tw(G) ≥ w(k). Moreover, if we letS′ be the
set of endpoints of elements ofP ′, we see that|S′|= |S|+1. Thus, 2k−|S′|< 2k−|S|, contradicting our choice
of counterexample. This proves the claim.

5.5 Routing for discs and cylinders

In this subsection, we will give several technical lemmas concerning almost planar graphs embedded in the disc
and cylinder. These lemmas look at how path systems intersect large societies embedded in the disc up to 3-
separations. Specifically, we will see how large nests in theembedded societies allow us to reroute the path
systems to achieve certain desirable properties.

First, we make a simple observation on nests in embedded societies. For anys-nestC = {C1, . . . ,Cs} in a
society(G,Ω) with an embedding in the disc up to 3-separations({G0,G1, . . . ,Gm},σ ,{∆1, . . . ,∆m}), we have the
following property. LetGi = Gci andΩi = Ωci with (Gi ,Ωi) equal to the embedding induced society ofCi. While
it is certainly possible that the cycleCi will not be contained inGi, we do have thatCj will be a subgraph ofGi for
all i < j ≤ s. It is an easy observation thatC′ = {Ci+1, . . . ,Cs} form an(s− i)-nest in the society(Gi,Ωi) with the
natural induced embedding up to 3-separations.

We will need the concept of a bramble which certifies when a graph has large treewidth. Given two subgraphs
H1 andH2 of a graphG, we say thatH1 andH2 touch if either there exists an edge with one end inV(H1) and
the other end inV(H2), or alternatively, the subgraphs have a vertex in common. Abrambleis a set of pairwise
touching, connected subgraphs. A subsetX ⊆ V(G) coversa bramble if every element contains a vertex ofX.
Theorder of a brambleB, denotedord(B), is the minimum size of a cover of the bramble. The next theorem of
Seymour and Thomas [15] shows the relationship between the size of a bramble and the treewidth of a graph.

Theorem 5.13 ([15]). Let G be a graph. Then

max
B is a bramble

ord(B) = tw(G)+1.

We will be considering a similar set-up in the following lemmas. We formalize it in the following common
hypothesis.

Hypothesis 1.Let G andH be graphs, and lets be a positive integer. LetΩ be a cyclic ordering of
the vertices ofV(H)∩V(G). Let W be the graphG∪H. Let ({G0,G1, . . . ,Gm},σ ,{∆1, . . . ,∆m}) be
an embedding of(G,Ω) in the disc∆ up to 3-separations. LetC = {C1, . . . ,Cs} be ans-nest in(G,Ω).
For 1≤ i ≤ s, let (Wi ,Ωi) be the embedding induced society ofCi .

We will need one more definition before proceeding. LetP andQ be paths such thatQ has both endpoints on
P. Let the ends ofP bexP,yP and the ends ofQ bexQ,yQ and assumexP,xQ,yQ,yP occur onP in that order. Then
the path obtained byrerouting P through Qis the pathxPPxQQyQPyP.

The following lemma essentially shows that given an almost embedded planar graphs embedded in the disc
with a large number of nested cycles and a linkage with all itsendpoints contained outside the nested cycles, then
we can re-arrange the linkage so that no path hits a deeply nested cycle.
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Lemma 5.14. Let t,k be positive integers, and let w(k) be the value given by Corollary 5.12. Assume Hypothesis
1. LetP be a path system of order k in W such that for every P∈ P, the endpoints of P are contained in V(H). If
s≥ t +2w(k)+2, then there exists a path systemP ′ equivalent toP such thatP ′ is disjoint from Ws−t .

Proof. We assume the lemma is false, and pick a counter-example containing a minimal number of edges. Thus,
we may assume that there does not exist any edge ofG which can be deleted without changing the embedding up
to 3-separations of the graph.3 It immediately follows from Remark 5.2 thatE(G0) ⊆

⋃s
i=1E(Ci)∪

⋃

P∈P E(P).
Our first claim below will look at when some graphGi can contain edges as well which are not contained in
E(Ci)∪

⋃

P∈P E(P). We now add the assumption that, with respect to containing aminimal number of edges, we
pick an embedding withm minimized.

Claim 1. The valuem is 0, i.e.G is planar andG0 = G.

Proof. Assumem≥ 1 and considerGm. As |V(G0)∩V(Gm)| ≤ 3, we see that at most one cycle ofC and at most
one element ofP contains an edge ofE(Gm). Let T be a spanning tree ofGm containing(

⋃s
i=1 E(Ci))∩E(Gm).

If E(P)∩E(Gm) 6= /0, we letP ′ be a linkage equivalent toP such thatE(Gm)∩E(zP′) ⊆ E(T). Otherwise,
we letP ′ = P. If there exists an edgee of E(Gm) \E(T), then it follows thatG− e with the embedding up to
3-separations({G0,G1, . . . ,Gm−e},σ ,{∆1, . . . ,∆m}) violates our choice of counterexample to contain a minimal
number of edges.

We conclude thatGm = T. However, in this case, we can embedGm in the disc∆m with the vertices of
V(Gm)∩V(G0) on the border. Thus,G0∪Gm embeds in∆−

(

⋃m−1
i=1 ∆i

)

where∆ is the disc. As a technicality,
if Ci intersectsGm in at least one edge, then in order to ensure that the subgraphWi remains unchanged, we need
that Gm embeds into∆m with the subpathCi ∩Gm on the boundary of the disc∆m. Given thatGm is a tree, this
is possible. We conclude that the original embedding up to 3-separations violates our choice to minimizem, and
consequentlym= 0 proving the claim. 3

There are two important consequences of Claim 1. First, we see thatE(W) =
⋃s

i=1 E(Ci)∪
⋃

P∈P E(P). Sec-
ondly, it now follows that there does not exist an edgee∈ E(W)\E(C) and a path systemP ′ equivalent toP such
thate /∈E(P ′), lest we again contradict minimality. We now show that the treewidth ofW is bounded by Corollary
5.12.

Claim 2. tw(W)< w(k).

Proof. If the tw(W)≥w(k), then there exists a path systemP ′ equivalent toP in W and a vertexv∈V(W)\V(P ′)
by Corollary 5.12. Moreover, the vertexv has degree 3, and so consequently there exists an edgee of W incident
v which is contained inE(P)\E(C), a contradiction. 3

We define adive to be a subpathR contained inP ′ such thatR is an Ω-path contained inG. Let t ′ =
max1≤i≤sV(R)∩V(Ci) 6= /0. We refer tot ′ as thedepthof the diveR.

Claim 3. For all l ≥ 2, if there exists a dive of depthl , then there exists a dive of depthl −1.

Proof. Consider a diveR of depthl . The pathR in the disc∆ has both endpoints on the boundary of∆. Thus, it
defines two closed sub discs of∆ intersecting inR. We fix ∆R to be the sub-disc of∆ which does not intersect
Cl+1 (when l = s, we fix ∆R arbitrarily). We now fixR to be a dive of depthl minimizing ∆R by inclusion. As
Cl−1 intersects∆R, we see that there exists a subpathQ contained inCl−1 with both endpoints inRand no internal
vertex inR. Assume thatP is the element ofP containingR. Observe that there exists at least one edge ofP, call
it e, which is contained in the subpath ofRwith both endpoints equal to the endpoints ofQ but is not contained in
E(C).

3The reason we would like to maintain the embedding is that thesubgraphsWi for 1≤ i ≤ s are dependent on both thes-nest as well
as the embedding. Further analysis could show that the embedding can be chosen so that the subgraphWs−t does not change; instead we
limit ourselves to deleting edges which do not alter the embedding.
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Assume as a case thatQ is internally disjoint fromP. Let P′ be the path obtained from reroutingP throughQ
and letP ′ = (P −P)∪{P′}. It follows thatP ′ is a path system equivalent toP and does not contain the edgee,
contradicting our assumption of minimality.

It follows that Q has an internal vertex contained inP. Thus, there exists a diveR′ intersecting an internal
vertex ofQ. If R′ intersectsCl as well, it follows thatR′ has depthl and that∆R′ is strictly contained in∆R,
contradicting our choice ofR. Otherwise,R′ has depthl −1, as desired by the claim. 3

Observe that for any two distinct divesRandR′, any vertexv∈V(R)∩V(R′) must be contained inΩ.
We now finish the proof of the lemma. Lest the lemma hold, we mayassume that there exists a dive of depth

at leasts− t. Consequently by Claim 3, for all 1≤ i ≤ s− t, there exists a diveRi of depth i. By planarity,
Ri intersectsCj for all 1 ≤ j ≤ i, and the pathRi −Ω intersectsCj for all 2 ≤ j ≤ i. We conclude that the set
{(Ri −Ω)∪Ci : 2 ≤ i ≤ 2w(k)+ 2} is a bramble. To see the order of this bramble, first observe that the paths
Ri − Ω and Rj −Ω are pairwise disjoint for all 2≤ i < j ≤ 2w(k) + 2. It now follows that every vertexv is
contained in at most two distinct subgraphs(Ri −Ω)∪Ci for 2≤ i ≤ 2w(k)+2. We conclude that there does not
exist a cover of sizew(k), and consequently, the bramble has order at leastw(k)+1. Theorem 5.13 and Claim 2
yield a contradiction, completing the proof of the lemma.

We now extend Lemma 5.14 to the “cylinder” case. The following lemma essentially shows that given an
almost planar graph embedded in a cylinder with a large number of homotopic cycles and a path system with all
it’s endpoints contained in the boundary of the cylinder, then we can re-arrange the linkage so that only a bounded
number of elements intersect a smaller middle portion of thecylinder. Moreover, given a cylindrical grid in this
middle portion of the cylinder, we can ensure that the new path system follows the grid when traversing the middle
portion of the grid.

Lemma 5.15. Let l, t, and k be positive integers. Assume Hypothesis 1. Letw(k) be the value given by Corollary
5.12. LetP be a path system of order k, and assume that for every P∈ P the endpoints of P are contained
in V(H)∪V(Ws). Let R be a linkage of order t which is orthogonal toC. If s ≥ 15w(k)2 + l ≥ 2(3(2w(k) +
2)(w(k))+(l +3w(k))+1 and t≥ 7w(k), then the following hold. There exists a linkageR′ ⊆R of order at most
w(k), a path systemP ′ equivalent toP, and an index i such that for every P∈P ′, the subgraph P[V(Wi)\V(Wi+l )]
is contained in V(R′).

Proof. Assume the lemma is false, and letW along with the path systemsP andR form a counterexample on
a minimal number of edges. Subject to having a minimal numberof edges, we pick an embedding up to 3-
separations({G0,G1, . . . ,Gm},σ ,{∆1, . . . ,∆m}) of G which minimizesm. Observe that there does not exist an
edge ofG0 which is not contained inC ∪P ∪R by our choice to minimize the number of edges. We will need to
consider several different path systems throughout the proof, and in anticipation, fixP1 = P.

We proceed in several steps. The first claim parallels Claim 1in the proof of Lemma 5.14.

Claim 4. There does not existj ∈ {1, . . . ,m} with G j a subgraph ofG−V(Ws).

Proof. Note that no element ofP1 has an endpoint contained inV(G) \ (V(Ws)∪V(C1)). Assumej is an index
such thatG j is a subgraph ofG−V(Ws). At most one elementCi intersects an edge ofG j , and similarly, at most
one element ofR intersects an edge ofG j . For all R∈ R andC ∈ C, we have thatR∪C does not contain any
cycle other than the cycleC. Thus, we see that there exists a spanning treeT contained inG j such that both
⋃s

1Ci ∩G j and
⋃

R∈RR∩G j are both subgraphs ofT. If we consider howP1 can intersect the edges ofG j , we see
that there exists at most one elementP of P1 which intersects an edge ofG j . If P cannot be rerouted inG j to use
only edges ofT, we see that there exists an edgee of G j and a path systemP ′

1 equivalent toP1 such that for all
P′ ∈ P ′

1, P′∩G j is a subgraph ofT +e. Note here we are using the fact that no element ofP1 has an endpoint in
V(G j)\V(G0). For this reason, we are not able to prove the stronger statement thatm= 0 andG is planar, because
some of the endpoints may be contained inV(Ws).

If there exists an edgef contained inE(G j)\(E(T)∪{e}), we see thatJ− f forms a counter-example on fewer
edges. Thus we may assume thatG j = T (or T+ewhen the edgee is defined). However, by embeddingT (T +e)
in the disc∆ j with the vertices ofV(G0)∩V(G j) on the border, we see thatG0∪G j embeds in∆−

(

⋃

i 6= j ∆i
)

. As
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in Claim 1, we need to embedT (T +e) with any vertices ofV(T)∩V(C) on the boundary of the disc∆ j in order
to avoid altering the subgraphsWi for 1≤ i ≤ s. Thus, we contradict our choice of embedding up to 3-separations
to minimizem, proving the claim. 3

Let W′ be the subgraphG− (V(Ws−1)−Cs−1). Thus,W′ is the subgraph obtained fromG by deleting the
portion of G contained “inside” the disc bounded byCs−1. By the previous claim,W′ is a subgraph ofG0 and
embedded in the disc.

Let the elements ofR be labeledR1, . . . ,Rt such that if we letr i be the endpoint ofRi in C1 for 1≤ i ≤ t, we
have ther1, r2, . . . , rt occur onC1 in that order. DefineW∗ to be the subgraphW3w(k)−(V(Ws−3w(k))−V(Cs−3w(k))).
Let R∗

i = R3w(k)+i for 1≤ i ≤ w(k) and letR∗ be the linkage{R∗
1, . . . ,R

∗
w(k)}. LetC∗ be the unique cycle contained

in R∗
1∪R∗

w(k)∪ ((C3w(k) ∪Cs−3w(k))−V(R1)) and let(J∗,Ω∗) be the embedding induced society ofC∗. Finally, let
Q be the linkage given by{Ci −V(J∗) : 3w(k)≤ i ≤ s−3w(k)}.

Pick a path systemP2 equivalent toP1 satisfying the following.

i. V(P2) is disjoint fromV(J∗).
ii . The graph

⋃

Q∈QQ∪
⋃

P∈P2
P has as few vertices of degree at least 3 as possible.

To see that such a path systemP2 exists, it suffices to show that there exists a path system satisfying i. Let C′ =
{C′

1, . . . ,C
′
3w(k)} be the planar nest withC′

i the unique cycle contained inRi+1∪Rt−i∪(Ci −V(R1))∪(Cs−i −V(R1))

for 1≤ i ≤ 3w(k). Note that sinceC′
i is contained inW′, it is trivially grounded and by constructionC′ satisfies the

definition of an 3w(k)-nest. Moreover, if we let(J′,Ω(J′)) be the embedding induced society byC′
1, we see that

the path systemP1 has all it’s endpoints disjoint fromJ′−V(C′
1). Note as well thatC′

3w(k) =C∗. Thus by applying
Lemma 5.14, we see that there exists a path system equivalenttoP1 which is disjoint from the embedding induced
society ofC′

3w(k) = J∗, as desired. Note, we are assuming here thatw(k)≥ 3 in order to simplify the constants.

Claim 5. The graph formed by
⋃

Q∈QQ∪
⋃

P∈P2
P has treewidth strictly less thanw(k).

Proof. Let A be the graph given by
⋃

Q∈QQ∪
⋃

P∈P2
P. Notice that by construction, every vertex of degree at least

3 in A is a vertex ofP2. If tw(A)≥ w(k), then by Corollary 5.12, there exists a path system, call itP ′
2, equivalent

to P2 contained inA avoiding some vertex of degree at least 3. However, the graph
⋃

Q∈QQ∪
⋃

P∈P ′
2
P will have

strictly fewer vertices of degree at least three, contradicting our choice ofP2 and proving the claim. 3

If every elementPofP2 could be divided into subpaths which each were perpendicular to the nest{C3w(k), . . . ,Cs−3w(k)},
then it would be an easy task to reroute each element through the subgraphJ∗ so that it would followR∗

i for some
i when restricted toW∗ and prove the lemma. However, the pathsP ∈ P2 are not necessarily so well behaved;
the pathP may “bounce” around between the various cycles of{C3w(k), . . . ,Cs−3w(k)}. The next claim shows that
these “bounces” are of bounded size.

We first need a definition to make explicit what we mean by “bounce”. A reversalof P2 is a subpathP of
some element ofP2 such that

i. P is contained inW∗, and
ii . there exists an indexj, 3w(k)≤ j ≤ s−3w(k) such that both endpoints ofP are contained inV(Cj) and no

internal vertex ofP is contained inV(Cj).

Thedepthof a reversalP with endpoints inCj is the maximum value of| j − j ′| such that 3w(k)≤ j ′ ≤ s−3w(k)
andV(P)∩V(Cj ′) 6= /0.

Claim 6. Every reversal ofP2 has depth at most 2w(k).

Proof. The proof follows the proof of Claim 3. LetP be a reversal of depthn with endpoints contained inCj for
some indexj, and letDP be the subdisc of∆ bounded byP and the subpath ofCj −R∗

1 containing the endpoints
of P. We claim that there exists a reversalP′ contained inDP with endpoints inCj and depthn−1. Assume not,
and pick such aP with n minimal, and subject to that, withDP minimal by containment. By symmetry, we assume
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thatV(P)∩V(Cj ′) 6= /0 with j ′− j = n. InsideDP, there exists a subpath ofCj ′−1 with both endpoints inP and
otherwise disjoint fromP. Call it Q. If Q were disjoint fromP2, then we could rerouteP2 throughQ to avoid
some vertex ofCj ′ and violate our choice ofP2 to satisfyii . We conclude that there exists a reversalP′ contained
in DP with both endpoints inCj of depth at leastn−1. If P′ has depthn, we violate our choice of to minimizeDP

by containment, and so we see that the desired reversalP′ of depthn−1 exists. Note thatP′ is disjoint fromP
except for possibly at its endpoints inCj .

Now assume that there exists a reversalR2w(k)+1 of depth 2w(k) + 1 with endpoints contained inCj . By
symmetry, we may assume thatR2w(k)+1 intersects the pathCj+2w(k)+1. We have just seen that there must exist
reversalsRi of depth i for 1 ≤ i ≤ 2w(k) + 1, each with endpoints onCj . Moreover, if we letDi be the disc
bounded byRi and the subpath ofCj −R∗

1 connecting its endpoints, we have thatD1 ⊆ D2 ⊆ ·· · ⊆ D2w(k)+1. For
all 1≤ i < j ≤ 2w(k)+1, if Ri intersectsRj , the intersection must lie onCj . Thus, if we letR′

i = Ri −V(Cj) for
1≤ i ≤ 2w(k)+1, we have thatV(R′

i)∩V(R′
j) = /0 for i 6= j. By planarity, it follows that the elements of the set

{R′
i ∪Cj+i : 1≤ i ≤ 2w(k)+1} are pairwise intersecting and form a bramble. Every vertex is in at most two distinct

elements of the formR′
i ∪Cj+i, and consequently, the bramble has orderw(k)+ 1 in P2∪Q, a contradiction to

Theorem 5.13 and Claim 5. 3

We will now see that the elements ofP2 can be subdivided into components which are nearly perpendicular to
a subset of the cyclesC3w(k), . . . ,Cs−3w(k). First, we give the following definition. LetS be a path system, and let
S∈S be an element with at least one internal vertex. Let the ends of Sbex andy, and letv be an internal vertex. We
say that the path systemS ′ is obtained bysubdividing the element S ofS at the vertex vif S ′ = (S−S)∪{xSv,vSy}.
The path systemS ′ is arefinement ofS if S ′ is obtained by repeatedly subdividing elements ofS.

We fix the set of cycles forC′ = {Ci(3w(k)) : 2 ≤ i ≤ 2w(k)+ 2}∪ {Cs−i3w(k) : 2 ≤ i ≤ 2w(k)+ 2}. We note
that by our assumption ons that s≥ 12(w(k))2. Thus cycles in{Ci(3w(k)) : 2 ≤ i ≤ 2w(k) + 2} and cycles in
{Cs−i3w(k) : 2≤ i ≤ 2w(k)+2} are disjoint.

Claim 7. There exists a refinementP3 of P2 which is nearly perpendicular to the set of cyclesC′. The order ofP3

is at mostw(k)+k, and at mostw(k) elements ofP3 intersectC6w(k).

Proof. We pick a set of verticesX ⊆V(P2) satisfying the following properties.

i. For all x∈ X, x∈V(C6w(k)).
ii . For all P ∈ P2 andx,y ∈ V(P)∩X, there exists a vertexz on the subpathxPy such thatz∈ V(C3w(k))∪

V(Cs−3w(k)).
iii . Subject toi andii , the setX is chosen with|X| maximal.

We now define a setZ as follows. For everyP∈ P2 such that there exists distinctx,y∈ X∩V(P), there exists a
vertexz∈ Z such thatz∈V(xPy)∩ (V(C3w(k))∪V(Cs−3w(k))). Moreover, we pickZ to be minimal over all such
sets. Thus, the setX can be thought of as selecting a vertexx for each time the path systemP2 returns to the cycle
C6w(k) after first visiting one of the “outside” cyclesC3w(k) or Cs−3w(k). The setZ then consists of vertices on the
cyclesC3w(k) andCs−3w(k) separating any pair of vertices ofX contained in the same element ofP2.

LetP3 be the refinement ofP2 obtained by subdividing the elements ofP2 at the vertices ofZ. We claim that
P3 is the refinement desired by the claim. First, we see thatP3 is nearly perpendicular to the set of cyclesC′.
Propertyii in the definition follows immediately, as if we had verticesx,y,z violating ii , it would yield a reversal
of depth 3w(k), contradicting Claim 6. To see that Propertyi holds, first observe that for allP∈ P3, P contains a
vertex inC6w(k). Moreover,P has no endpoint inW3w(k)−Ws−3w(k). It follows by the planarityW3w(k)−Ws−3w(k)
and the fact thatP cannot contain a reversal of order 3w(k) that P intersects every elementC′, proving thatP3

satisfiesii .
We now show that the order ofP3 satisfies the desired bounds. Assume that there exist at least w(k) + 1

elements ofP3 which intersectC6w(k). If we let S be the set of endpoints ofP3, we see that{P−S : P ∈ P3}
contains a linkageP ′

3 of orderw(k)+ 1 such thatP ′
3 is nearly perpendicular to{C3i(w(k)) : 2 ≤ i ≤ 2w(k)+2}.

However, the setsB = {P∪ (Ci3w(k) −V(J∗)) : P ∈ P ′
3,1 ≤ i ≤ 2w(k)+ 2} forms a bramble of orderw(k)+ 1

which is contained inP3 ∪Q, contradicting Claim 5. Thus, we see that at mostw(k) elements ofP3 intersect
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C6w(k). The bound on the order ofP3 now follows from the fact that any element ofP3 which does not intersect
C6w(k) is an element ofP2 as well, and there are at mostk such elements. 3

Fix P3 as in Claim 7. We now pick an appropriate path systemP4 which is equivalent toP3. First, we
give some notation. Lett ′ be a non-negative integer. LetW∗

t ′ be the subgraphW3(2t ′+2)w(k) − (Ws−3(2t ′+2)w(k)−
Cs−3(2t ′+2)w(k)), and letJ∗t ′ be the subgraphJ∗∩W∗

t ′ . We let

C′
t ′ = {C3iw(k) : 2t ′+2≤ i ≤ 2w(k)+2}∪{Cs−3iw(k) : 2t ′+2≤ i ≤ 2w(k)+2}.

ThusC′
0 = C′. We now fixP4 to be a path system equivalent toP3 and fix non-negative integert ′ satisfying the

following properties.

i. J∗t ′ ∩
(

⋃

P∈P4
P
)

is equal toJ∗t ′ ∩
(

⋃t ′
1 R∗

i

)

.

ii . There exist at mostw(k)− t ′ elements which intersectW∗
t ′ −J∗t ′ and every such an element is nearly perpen-

dicular toC′
t ′ .

iii . No element ofP4 intersects bothJ∗t ′ andW∗
t ′ −V(J∗t ′).

Moreover, we pickP4 andt ′ over all such possibilities to maximize the value oft ′. Note that such a path system
P4 exists, asP3 satisfiesi-iii with t ′ = 0 since by Claim 7 at mostw(k) elements ofP3 intersect the elements of
C′. The next claim will essentially complete the proof of the lemma.

Claim 8. There do not exist an element ofP4 which intersects the subgraphW∗
t ′ −V(J∗t ′).

Proof. Assume the claim is false. We will derive a contradiction to our choice ofP4 to maximizet ′. Observe
that t ′ < w(k). Fix a vertexv in R∗

t ′+1 ∩Cs−3(2t ′+2)w(k), and letP ∈ P4 be the first path we encounter when

traversingCs−3(2t ′+2)w(k) starting fromv and moving away from the vertices of
⋃t ′

1(R
∗
i ∩Cs−3(2t ′+2)w(k)). Let u

be a vertex ofP∩Cs−3(2t ′+2)w(k), and letS be the subpath ofCs−3(2t ′+2)w(k) with endpointsu andv intersecting
R∗

w(k)∩Cs−3(2t ′+2)w(k). Let v′ be a vertex ofRt ′+1∩C3(2t ′+2)w(k). Let u′ be a vertex ofP∩C3(2t ′+2)w(k) and letS′ be
the subpath ofC3(2t ′+2)w(k) linking u′ andv′ intersectingR∗

w(k) ∩Cs−3(2t ′+2)w(k). Finally, letD∗ be the subgraph of
W∗ contained in the disc bounded by the pathsR∗

t ′+1∩J∗t ′ , P, SandS′.
We claim that there does not existP′ ∈ P4, P′ 6= P, and indexj, 3(2t ′+3)w(k)≤ j ≤ s−3(2t ′+2)w(k) such

thatCj ∈ C′
t ′ andP′ intersectsCj ∩D∗. Assume otherwise. AsP′ does not intersect any of the pathsR∗

w(k) ∩ J∗t ′ ,
P∩D∗, or Sby construction, and by the planarity ofD∗, we see that there exist verticesx andy on P′ such that
x,y∈V(P′)∩V(Cj−3w(k)) and the subpathxP′y intersectsCj . However, this contradicts the fact thatP4 is nearly
perpendicular toC′

t ′ . We conclude that no suchP′ exists.
Let S′′ be a subpath ofC3(2t ′+3)w(k) intersectingR∗

w(k) and linking a vertex ofR∗
t ′+1∩C3(2t ′+3)w(k) and a vertex

of P∩C3(2t ′+3)w(k). We have just seen thatS′′ must be disjoint from all elements ofP4 except forP. Let P′′ be the
path obtained by reroutingP through the pathS∪S′′ ∪ (R∗

t ′+1∩ J∗t ′). It now follows that if we letP ′
4 be the path

system(P4−P)∪P′′, we satisfyi - iii above with the integert ′+1, contradicting our choice ofP4 andt ′. This
contradiction completes the proof of the claim. 3

The path systemP4 is equivalent to a refinement ofP2, which itself is equivalent to the original path system
P1. Consequently,P4 contains a path systemP5 which is equivalent toP1. The path systemP5 satisfies

⋃

P∈P5
P∩

W∗
t ′ =

⋃t ′
1 R∗

i ∩W∗
t ′ . Moreover, by our choice of the originals, we see thats− 2(3(2t ′ + 2)w(k)) ≥ l , and soW∗

t ′

containsl consecutive cyclesCi,Ci+1, . . . ,Ci+l , as desired.

5.6 Proof of Theorem 5.9

In this section, we give the proof Theorem 5.9, completing the proof of Theorem 3.3.
Intuitively, we fix a copy of a topological minor which has as few endpoints in the flatr-wall decomposition

as possible. Let the topological minor be given by a path systemP. We can always find a large belt of ther-
wall that has the cylindrical grid structure and does not contain any of the endpoints ofP. If indeed none of the
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endpoints are contained in the inside ring of the cylindrical grid as well, then we apply Lemma 5.14 and find a
copy of the topological minor which doesn’t contain the middle vertices of ther-wall decomposition, the desired
outcome. Thus, we reduce to the case when some of the endpoints ofP are contained in the inside ring. We then
apply Lemma 5.15 and use propertyv. to move at least one of the endpoints outside the cylinder, contradicting our
choice ofP and completing the proof.

Proof (Theorem 5.9).Let δ andt be given. Let(A,G,H,X,W) be the given nearly flatr-wall decomposition with
apex boundt. Let w(δ + t) be the value of the function in Theorem 5.12. We let

m= 2(2(δ + t))2(15[w(δ + t)]2+2l +w(δ + t)
)

.

We fix a brick containing the vertexvr/2
r , and let{C1,C2, . . . ,Cm} be them-target centered at this brick. We assume

r ≥ 2m, ensuring that the cycles are defined.
Fix a rooted graphS in the δ -folio. For any given model ofS in J, we may assume that it is given as a path

systemPS. We let P̄ be the refinement ofPS obtained by including as a terminal any vertex ofA which is an
internal vertex of some element ofPS. We letP be the path system given by{P−A : P∈ P̄}. Note thatP has at
mostδ + t elements. We define the valuesni for 1≤ i ≤ 2(δ + t) as follows,

ni = i
(

15[w(δ + t)]2+2l +w(δ + t)
)

.

We are now able to give our requirements forl andd.

l = δ + t andd = 2(δ + t)n2(δ+t).

Let G(i) be the embedding induced society ofCi for 1 ≤ i ≤ m. For an indexj, 0 ≤ j ≤ 2(δ + t), we define
a j = a j(P) to be the maximum indexi, 1≤ i ≤ m, such that

i. There are exactlyj distinct endpoints of elements ofP which are contained inG(a j),
ii . a j ≤ m−14w(δ + t)l , and
iii . subject toi andii , G(a j −n j)−G(a j) contains no endpoint of any element ofP.

It is not necessarily the case thata j will be defined for every value ofj. However, as we will see below, for any
path systemP arising from a given model ofS in J, there exists at least one indexj such thataj is defined and the
value is bounded by a function ofδ andt.

Claim 1. There exists an integerj such that the valuea j is defined. Moreover, for allj for which a j is defined,
then there exists an indexj ′ ≤ j such thata j ′ is defined anda j ′ ≤ m−2(δ + t)n2(δ+t).

Proof. The subgraphsG((i−1)n2(δ+t))−G(in2(δ+t)) for 1≤ i ≤ 2(δ + t)+1 are disjoint. As the linkageP has at
mostδ + t elements, it has at most 2(δ + t) distinct endpoints. Thus, there exists an indexi′ and valuej such that
G((i′ −1)n2(δ+t))−G(i′n2(δ+t)) is disjoint from the set of endpoints of elements ofP andG(i′n2(δ+t)) contains
exactly j endpoints of elements ofPS. Note that(2(δ + t)+1)n2(δ+t) ≤ m−15w(δ + t)2 ≤ m−14w(δ + t), and
so ii in the definition ofa j is satisfied. We conclude thata j is defined.

The same argument shows that ifa j is defined for some indexj, then there exists a valuej ′ ≤ j such thata′j is
defined anda j ′ ≤ m−2(δ + t)n2(δ+t). 3

We now fix the path systemPS forming a model ofS such thata j is defined for the path systemP and
the value j is minimal over all such path systems and choices ofa j . By the previous claim, we see thata j ≥
m−2(δ + t)n2(δ+t). To help keep the notation simple, leta= a j . Let Z be the set of endpoints of elements ofP.
The next claim is the crux of our proof of Theorem 5.9. In the claim, we pick a path system forming a model of
S moving at least one of the vertices ofZ∩G(a) further outside them-nest, and thus derive a contradiction toj
minimal.

Claim 2. The valuej is 0, i.e.Z is disjoint fromG(a).
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Proof. Our first goal will be to find a path systemQ1 contained inJ−A which is equivalent toP and intersects
nicely with the nestC = {Ca−1, . . . ,Ca−nj}. Let R be a linkage of order 7w(δ + t) which is orthogonal toC
comprised of subpaths of the horizontal paths of the wallW. We additionally require that ifR,R′ ∈R are subpaths
of the i-th andi′-th horizontal paths ofW, then|i− i′| ≥ 2l ; that is, we choose horizontal paths which are pairwise
separated by at least 2l other horizontal paths ofW not included inR. Note that to ensure the existence of such a
linkageR, we use the upper bound ona given byii .

Apply Lemma 5.15 to the nestC and the orthogonal linkageR to get a path systemQ1 equivalent toP satisfy-
ing the statement of the Lemma 5.15. Fix the indexa′ such that every subpath ofQ1 contained inG(a′− (n j−1+2l +w(δ + t)))−
G(a′) is contained in the linkageR. Note that we may assume thata′ ≥ a−15[w(δ + t)]2. After first finding a
path systemQ2 equivalent toQ1 which eliminates a technicality, the remainder of the proofwill proceed as fol-
lows. We find a pattern contained inQ2 centered atCa′ of depthl which can be replaced by a pattern contained
in G(a′− (n j−1+2l))−G(a′−n j−1), and thus move at least one endpoint of the path system “outside” the cycle
G(a′−n j−1). Thus, we will contradict our choice ofP.

First, we consider the technicality mentioned above. We eliminate the possibility that elements intersect the
graphG(a′) “needlessly”. Consider an element ofQ1, and letQ be a component of the restriction to the vertex
set ofG(a′) such thatQ has both endpoints contained inV(Ca′). If we consider the embedding ofG(a′) in the
disc, then the pathQ divides the disc into two sub-discs∆1(Q) and∆2(Q). We say thatQ is wastefulif at least
one of the discs∆i(Q) does not contain a vertex ofZ. We claim that there exists a path systemQ2 equivalent to
Q1 such thatQ2 intersectsG(a′− (n j−1+2l))−G(a′) exactly in the a subset of at mostw(δ + t) components
of R, and, moreover,Q2 does not contain a wasteful pathQ. To see this, consider a wasteful pathQ in Q1 and
assume that∆1(Q) does not contain a vertex ofZ. Assume we pick such aQ to minimize∆1(Q) by containment.
It follows that no other element ofQ1 intersects∆1(Q). To see this, such a component cannot contain an element
of Z by the choice ofQ. Furthermore, if there exists a componentQ′ intersecting∆1(Q), thenQ′ must be wasteful
and we violate the choice ofQ to minimize∆1(Q). We conclude, by reroutingQ through a subpath in the cycle
Ca′−(nj−1+2l+w(δ+t)), we can find a path system equivalent toQ1 which satisfies the property that the intersection
with the subgraphG(a′− (n j−1+2l +w(δ + t)−1))−G(a′) is contained inR and which has one less wasteful
subpath thanQ1. Thus, by inductively iterating this process at mostw(δ + t) times, we arrive at the desired path
systemQ2.

Consider a componentX of the graph
⋃

Q∈Q2
Q∩G(a′− l) such thatV(X)∩Z 6= /0, and letT be the path system

associated to the graphX. There possibly exist edges of the original path systemP̄ with one endpoint inV(T)∩Z
and the other endpoint inA. Let T+ be the union ofT and all such edges. By constructionT+ is a pattern centered
atCa′ of depthl .

The patternsT+ come in two slightly different types: eitherT+ can intersectCa′−l , or alternatively, the path
systemT could be entirely contained inG(a′). If such aT exists of the second type, we fixT to be such a path
system, and fix∆ to be a subdisc of the embedded graphG(a′ − l) containingT and otherwise not intersecting
V(Q2)\V(T).

Alternatively, we consider the case when every choice ofT must intersectV(Ca′−l). We claim thatT+ can be
chosen so that there exists a subpathL of Ca′−l such thatL contains all the vertices ofV(T+)∩V(Ca′−l ) andL is
otherwise disjoint fromV(Q2). To ensure thatL is unique for everyT+, we fix an edgee∈ E(Ca′−l)\E(R), and
pick the pathL so that it does not contain the edgee. For every suchT+, fix L(T) to be a minimal subpath ofCa′−l

containing all the vertices ofV(T+)∩V(Ca′−l ) and not containing the edgee. Fix T such thatL(T) is minimal by
containment. Given the embedding up to 3-separations ofG(a′− l) in the disc, there exists a subdisc∆ containing
the vertices ofT such that every vertex in the boundary of∆ is either contained inT or in L(T). If there existed a
T ′ intersecting the disc∆, then every vertex ofV(T ′)∩V(Ca′−l ) would be contained inL(T) by planarity. Thus,
L(T ′) would be a proper subpath ofL(T), a contradiction. Alternatively, if some subpathQ of Q2 not contained in
T intersects∆, then as we have just seen,Q cannot contain any vertex inZ. Therefore, the existence ofQ implies
the existence of a wasteful path, again a contradiction. We conclude that∆ intersectsQ2 only in the vertices of
V(T).

We now will replace the patternT+ by a homeomorphic pattern contained inG(a′−(n j−1+2l)−G(a′−n j−1)
to find a new path systemQ∗

S forming a model ofS in J. Moreover, if we constructQ̄∗ andQ∗ analogously toP̄
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andP, we see thata j−1(Q
∗) will be defined, contradicting our choice ofP to minimize j.

We first consider the case whenT does not contain any vertex ofCa′−l . In this case, we pick a brickB in
G(a′− (n j−1+2l))−G(a′−n j−1) which does not intersectR. By propertyv, the brickB admits anl -target and
so contains a pattern̄T+ homeomorphic toT+. In fact, as the patternT+ does not intersectCa′−l , we see that
V(T̄+)\A is contained in the embedding induced society of the brickB. Thus,V(T̄+) is disjoint from the linkage
R, and consequently, fromV(Q2). Let Q∗

S be a model forS in J obtained fromQ2 by deleting the vertices of
V(T) and adding the corresponding paths inT̄+.

We now consider the alternative case when at least one element of T+ intersectsCa′−l . We letR̄ be the subset
of elementsR of R such thatR is contained in some element ofQ2 andR has an endpoint inL(T+). As we
have seen in the above paragraph, for everyR∈ R̄, R has one endpoint inV(T). Let R1 andR2 be elements
of R̄ containing the endpoint ofL(T+). We now turn our attention to the graphG(a′ − (n j−1 + 2l)) and it’s
embedding up to 3-separations in the disc. By construction,there exists a subdisc of the embedding, call it∆̄
such that∆̄ is bounded only by vertices̄R, T, and a subpath of the cycleCa′−(nj−1+2l). We also assume that the
disc ∆̄ in fact contains all the elements of̄R containing the endpoint ofL(T+). If we look at the subgraph of
G(a′− (n j−1+2l))−G(a′−n j−1) contained in∆̄, then by propertyv of Theorem 5.8 this subgraph contains an
l -target centered at a brick and a patternT̄+ homeomorphic toT+. We may assume, in fact, that for any element
P ∈ T+ such thatP has an endpoint contained inR∈ R̄, the corresponding element̄P in T̄+ has as the other
endpoint a vertex ofR∩V(C(a′+nj−1+2l)). Thus, by deleting all the vertices ofQ2 contained in∆̄−V(C(a′+nj−1+2l))

from PS and addingT̄+, we find a path systemQ∗
S forming a model ofS in J.

Given the path systemQ∗
S, we defineQ̄∗ andQ∗ as in the definition ofP̄ andP. In either of the two cases

above, we conclude that the constructed path systemQ∗ has at mostj − 1 endpoints contained in the subgraph
G(a′) and no endpoint contained inG(a′− n j−1)−G(a′), contradicting our choice ofP and proving the claim.
Note that we are using here the property that there are no roots of J contained inG to ensure that the new path
systemQ∗

S does in fact form a model of the (rooted) topological minor ofS. 3

Theorem 5.9 now follows by the upper bound ona and Lemma 5.14. As the graphG(a) contains the nest
{Cm, . . . ,Cm−a} and no endpoint of the path systemP, there exists a path systemP∗ in the subgraphG∪H which
is equivalent toP and does not contain any vertex ofG(m). Specifically, by extendingP∗ to a model ofSin J using

edges incident the apex setA, we see that there is a model ofSwhich does not contain the pegvr/2
r ∈V(G(m)), as

claimed.

6 Immersion

Let G,H be graphs. Animmersionof H in G is a functionα with domainV(H)∪E(H), such that:

• α(v) ∈V(G) for all v∈V(H), andα(u) 6= α(v) for all distinctu,v∈V(H),
• for each edgee of H, if e has distinct endsu,v thenα(e) is a path ofG with endsα(u),α(v), and if e is a

loop incident with a vertexv thenα(e) is a cycle ofG with α(v) ∈V(α(e)), and
• for all distincte, f ∈ E(H),E(α(e)∩α( f )) = /0.

In fact, we may impose on another condition in the definition of immersion, that

• for all v∈V(H) ande∈ E(H), if e is not incident withv in H thenα(v) 6∈V(α(e)).

Let us call this “strong immersion”.
In this section, we show that our main theorem, Theorem 1.1 implies that the immersion containment problem

is also fixed-parameter tractable parameterized by the order of |E(H)|. However, our reduction from Theorem
1.1 does not work for the “strong immersion” containment problem. We conjecture that the strong immersion
containment is fixed-parameter tractable parameterized bythe order of|E(H)|, too.

Theorem 6.1. For every fixed graph H, there is a O(|V(G)|3) time algorithm that decides if H is an immersion in
G.
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Proof. Let k = |E(H)|+ |V(H)|. We construct first a new graphG′ from G by subdividing each vertex and
replacing each original vertex byk duplicates. Formally, for eache∈ E(G), there is a vertexe′ in G′; for each
vertexv ∈ V(G), there arek verticesv1, . . . , vk in G′, and if v ∈ V(G) is an endpoint ofe∈ E(G), then vertex
e′ ∈V(G′) is adjacent tov1, . . . , vk in G′. Note that the degree ofe′ is 2k.

Let ℓ = 2k|V(H)|+1 and let us use the algorithm of Theorem 1.1 to find aKℓ topological minor inG′. We
claim that if there is such a topological minor modelφ : V(Kℓ) →V(G′), thenH has an immersion inG. To see
this, observe first thatφ(v) is a vertex with degree at leastℓ−1> 2k, thusφ(v) = ui for someu∈ V(G); let us
defineα(v) = u in this case. It is clear thatα maps at mostk vertices ofH to the same vertex ofG. Asℓ/k> |V(H)|
holds, one can select verticesx1, . . . , x|V(H)| whose images inφ are all distinct. For any 1≤ i, j ≤ |V(H)|, the path
φ(xix j) betweenφ(xi) andφ(x j) in G′ gives a pathα(xix j) betweenα(xi) andα(x j) in a natural way. As the paths
φ(xix j) are pairwise internally vertex disjoint inG′, the pathsα(xix j) are pairwise edge disjoint inG: a vertex
e′ ∈ E(G′) can be used by at most one of the pathsφ(xix j). Therefore,φ shows thatK|V(H)| has an immersion in
G, which immediately implies thatH has an immersion inG. This means that we are done in the case whenKℓ is
a topological minor ofG′.

Suppose now thatKℓ is not a topological minor ofG′. We modifyG′ to obtain a new graphG′′ as follows. For
everyv∈V(G), we introduce a new copy ofKℓ and identifyv1 with a vertex ofKℓ. Thus the number of vertices
of G′′ is |V(G′)|+ |V(G)|(ℓ−1). Similarly, we obtainH ′′ from H by introducing for eachu∈V(H) a new copy
of Kℓ and identifyingu and a vertex ofKℓ (so |V(H ′′)|= ℓ|V(H)|).

We claim thatH ′′ is a topological minor ofG′′ if and only if H has an immersion inG. For the if part, suppose
thatα is an immersion ofH in G. In this case, it is easy to construct a modelφ of H ′′ in G′′: if α(u) = v for some
u∈V(H) andv∈V(G), then we setφ(u) = v1, map the clique attached tov in H ′′ to the clique attached tov1, and
transform each pathα(u1u2) in G into a corresponding pathφ(u1u2) in G′′. We can ensure that the paths inφ are
internally vertex disjoint: the paths inα are edge disjoint (so we can ensure that each vertexe′ ∈V(G′′) is used
at most once) and thek verticesv1, . . . , vk in G′′ are sufficient to accommodate the at most|E(H)| paths going
throughv in α .

For the only if part, suppose thatφ is a model ofH ′′ in G′′. Consider a vertexu of H ′′ that also appears inH
(i.e., it is not a vertex introduced by a new clique). The degree ofu in H ′′ is more thanℓ−1 (assuming thatH has
no isolated vertices) andu is part of anℓ-clique inH ′′. Thusφ(u) is a vertex ofG′′ having degree more thanℓ−1
and part of a topological minor model of aℓ-clique. We claim thatφ(u) = v1 for somev∈V(G). Every model of
an ℓ-clique is fully contained in a biconnected component ofG′′. As G′ has noℓ-clique topological minor, such
a biconnected component must be one of theKℓ-cliques created in the construction ofG′′. Furthermore, the new
vertices of such a clique have degree exactlyℓ−1, thusφ(u) can be only a vertexv1 for somev∈ V(G). Thus
φ restricted toH is a topological minor model ofH that does not go inside the cliques, which means that it is a
topological minor model ofH in G′. Arguing as in the first part of the proof, it follows thatH has an immersion
in G.

Let us estimate the running time of the algorithm. First, we can assume that|E(G)| ≤ cH |V(G)| for some
constantcH depending only onH: by a classical result of Mader, if the average degree ofG is sufficiently large,
then G has aK|V(H)| topological minor, immediately implying thatH has an immersion inG. Therefore, the
number of vertices ofG′ is k|V(G)|+ |E(G)| = O(|V(G)|) (for fixed H). The construction ofG′′ increases the
number of vertices by a factor ofℓ, hence|V(G′′)|= O(|V(G)|) also holds. Thus both invocation of Theorem 1.1
needsO(|V(G)|3) time.
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