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Abstract

Let P = {P1, . . . , Pl} be a set of internally disjoint paths contained in a graph G and let
S be the subgraph defined by

⋃t
i=1 Pi. A P-bridge is either an edge of G − E(S) with both

endpoints in V (S) or a component C of G − V (S) along with all the edges from V (C) to V (S).
The attachments of a bridge B are the vertices of V (B) ∩ V (S). A bridge B is k-stable if there
does not exist a subset of at most k − 1 paths in P containing every attachment of B. A classic
theorem of Tutte states that if G is a 3-connected graph, there exists a set of internally disjoint
paths P ′ = {P ′

1, . . . , P
′
l } such that Pi and P ′

i have the same endpoints for 1 ≤ i ≤ t and every
P ′-bridge is 2-stable. We prove that if the graph is sufficiently connected, the paths P ′

1, . . . , P
′
l

may be chosen so that every bridge containing at least two edges is in fact k-stable. We also give
several simple applications of this theorem related to a conjecture of Lovász on deleting paths
while maintaining high connectivity.
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1 Introduction

The graphs we consider will be simple with no loops or multiple edges. We include in the definition of
a path the trivial path consisting of a single vertex. An internal vertex of a path is a vertex not equal
to one of its endpoints. Two paths P and Q are internally disjoint if every vertex in V (P ) ∩ V (Q)
is an endpoint of both P and Q. Given two graphs G1 and G2, the graph G1 ∪ G2 has vertex set
V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). In general, we will follow the notation of [2].

Let G be a graph. A path system P is a set {P1, P2, . . . , Pl} of pairwise internally disjoint paths
in G such that if Pi is trivial, then for all j, j 6= i, V (Pi) * V (Pj). The order of the path system P,
denoted |P|, is the number of elements. Let P = {P1, . . . , Pl} be a path system of order l and label
∗This work partially supported by a fellowship from the Alexander von Humboldt Foundation
†Email address: wollan@di.uniroma1.it
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the endpoints of Pi to be si and ti (with si = ti in the case Pi is trivial). A path system P ′ of order
l is equivalent to P if we can label the elements of P ′ as P ′1, . . . , P

′
l so that the endpoints of P ′i are

si and ti for all 1 ≤ i ≤ l.
Let P = {P1, . . . , Pl} be a path system in a graph G and let HP be the subgraph of G given by⋃l

1 Pi. A P-bridge in G is a connected subgraph B such that one of the following holds.

(i) B is a single edge of E(G) \ E(HP) with both endpoints contained in V (HP). In this case, B

is called a trivial bridge.

(ii) B− V (HP) is a connected component of G− V (HP) and B contains every edge of G with one
end in V (B) \ V (HP) and one end in V (HP).

The attachments of the bridge B are the vertices of V (B) ∩ V (HP).
A classic theorem of Tutte states the following.

Theorem 1.1 ([11]) Let l ≥ 3 be a positive integer and let P be a path system in a graph G of
order l. If G is 3-connected, then there exists a path system P ′ which is equivalent to P such that
for all P ′-bridges B, there does not exist an element P ′i ∈ P ′ which contains every attachment of B.

The theorem is sometimes known as the stable bridges theorem, where a P-bridge B of a path system
P is stable if there does not exist an element P ∈ P which contains every attachment of B. We can
generalize this notion of stability in the following way. Let P = {P1, . . . , Pl} be a path system. A
P-bridge B is k-stable if there does not exist a subset I ⊆ {1, 2, . . . , l} with |I| ≤ k−1 such that every
attachment of B is contained in

⋃
i∈I V (Pi). Stability is then equivalent to 2-stability. Obviously, a

trivial bridge can never be k-stable for k ≥ 3. However, one might hope that the following natural
generalization of Tutte’s theorem holds.

Question 1 Does there exist a constant c such that the following holds? Let G be a ck-connected
graph, and let P = {P1, P2, . . . , Pl} be a path system of order l for l ≥ k +1. Then there exists a path
system P ′ which is equivalent to P such that every trivial P ′-bridge is stable and every non-trivial
P ′-bridge is k-stable.

Unfortunately, there is an annoying counter-example to the above question. Let G be a very
highly connected graph and let k ≥ 2 be a positive integer. Let x1, . . . , xk be k distinct vertices in
G. Let P = {P (i, j) : 1 ≤ i < j ≤ k} be a path system of order

(
k
2

)
such that the endpoints of

P (i, j) are xi and xj . In effect, P forms a subdivision of the complete graph Kk. Assume also that
for every 1 ≤ i < j ≤ k, the vertices xi and xj are adjacent. If the question were true, then there
would exist a path system P ′ equivalent to P with P ′ = {P (i, j)′ : 1 ≤ i < j ≤ k} such that P (i, j)′

has endpoints xi and xj . Moreover, every trivial P ′-bridge is stable and every non-trivial P ′-bridge
is k-stable. Specifically, this implies that each element P (i, j)′ of P ′ is an induced path from xi to
xj and consequently consists of the single edge xixj . We conclude that the subgraph formed by
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⋃
P ′∈P ′ P

′ is exactly the Kk subgraph of G induced by {x1, . . . , xk}. Any non-trivial bridge, even if
it has as attachments all the vertices {x1, . . . , xk} will have all its attachments contained in k − 1
elements of P ′, namely P (1, 2)′, P (1, 3)′, . . . , P (1, k)′. Thus, no non-trivial bridge can be k-stable.

In conclusion, despite the fact that P is a path system of order O(k2) and that G could be chosen
to be arbitrarily highly connected, the desired equivalent path system cannot exist. However, we
will see that modulo this technicality, Question 1 is true.

Fix P = {P1, . . . , Pl} to be a path system in a graph G. Let P ′ = {P ′1, . . . , P ′l } be a path system
equivalent to P such that the endpoints of P ′i are s′i and t′i. We say P ′ is an induced simplification
of P if for all indices i such that P ′i has length at least two and s′i is adjacent to t′i, then there exists
an index j such that P ′j is the edge s′it

′
i. In other words, an induced simplification is obtained by

repeatedly replacing an element of P of length at least two by a single edge connecting its endpoints.
Note that the induced simplification of P need not be unique. Assume that there exist elements Pi

and Pj which are both paths between the same two vertices u and v, and, moreover, assume there
exists the edge uv in G. A induced simplification could be obtained by replacing either Pi or Pj by
the edge uv. Finally, for all positive integers k, we say a path system P is k-spread if there does not
exist an induced simplification P ′ = {P ′1, P ′2, . . . , P ′l } of P and a subset I ⊆ {1, . . . , l} with |I| < k

such that
⋃

i∈I V (P ′i ) =
⋃l

1 V (P ′i ). Note that if the elements of P are pairwise disjoint and l ≥ k,
then P is k-spread. The following theorem is the main goal of this article.

Theorem 1.2 Let k ≥ 2 be a positive integer and let G be an 83k-connected graph. Let P be a
k-spread path system contained in G. Then there exists a path system P ′ which is equivalent to P
such that every trivial P ′-bridge is stable and every non-trivial P ′-bridge is k-stable.

The following corollary follows immediately from Theorem 1.2 and the definition of k-spread.

Corollary 1.3 Let k ≥ 2 be a positive integer and let G be a 83k-connected graph. Let P be a path
system of order l, l ≥ k, such that every element of P is an induced path of length at least two. Then
there exists a path system P ′ which is equivalent to P such that every trivial P ′-bridge is stable and
every non-trivial P ′-bridge is k-stable.

This article is organized as follows. In section 2, we give some necessary notation and auxiliary
results. In Section 3, we present two applications of Theorem 1.2 to questions related to a conjecture
of Lovász on deleting paths while maintaining high connectivity. In the following sections, we give
the proof of the main theorem. We conclude with a brief discussion on the possibility of improving
the amount of connectivity necessary in the main theorem as well as a lower bound for the best
possible value of the constant.
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2 Notation

We first give some further notation which we will use going ahead. A separation (A, B) of a graph G

is a pair of subsets of V (G) such that A∪B = V (G) and G = G[A]∪G[B]. The order of a separation
is |A ∩B|. A separation (A, B) is trivial if A ⊆ B or B ⊆ A. Given a path P in a graph G and two
specified vertices x and y in P , we refer to the subpath of P with endpoints x and y by xPy.

While it is most convenient, and perhaps most natural, to phrase Theorem 1.2 in terms of path
systems, for the proof and in one of the applications, we will use a slightly different statement focusing
on the subgraph formed by the union of the elements of the path system.

Let S be an arbitrary subgraph of a graph G. A set of branch vertices of S is any subset X ⊆ V (S)
such that X contains every vertex of S of degS at least three and every vertex of degS at most one.
Fix a set X of branch vertices of S. An (S, X)-segment is either

(i) a non-trivial path P contained in S with both endpoints contained in X and no internal vertex
in X, or

(ii) a trivial path P consisting of a vertex of degree 0 in S.

Observe that by definition the set of (S, X)-segments forms a path system.
Let S be a subgraph of a graph G and X a set of branch vertices of S. Let P be the path system

of (S, X)-segments. An (S, X)-bridge will simply be a P-bridge, and an (S, X)-bridge is k-stable if it
is k-stable with respect to the path system P. The reader might note that the definition of P-bridge
only relies on the subgraph formed by

⋃
P∈P P , i.e. the subgraph S, and therefore the reference to

the set X of branch vertices might be superfluous. However, the notion of k-stability only makes
sense for a specific set X of branch. Since we will be focusing on stability here, we will only refer to
(S, X)-bridges including the reference to the branch set.

We now restate Theorem 1.2 in these new terms.

Theorem 2.1 Let k ≥ 1 be given and let G be a 83k-connected graph. Let S be a subgraph of G, and
let X be a set of branch vertices of S. Assume that the set of (S, X)-segments is k-spread. Then there
exists a subgraph S′ of G such that X is a set of branch vertices of S′ with the following properties.
The set of (S′, X)-segments is equivalent to the set of (S, X)-segments, every trivial (S′, X)-bridge is
stable, and every non-trivial (S′, X)-bridge is k-stable. Moreover, if there exists a non-trivial bridge
of (S, X), then there exists a non-trivial bridge of (S′, X).

Theorem 1.2 is an immediate consequence of Theorem 2.1.
The proof of Theorem 2.1 as well as the applications of Theorem 2.1 will make use of the theory

of graph linkages. A linkage problem of size k in a graph G is a multiset of k subsets of V (G)
of size two L = {{si, ti} : si, ti ∈ V (G), 1 ≤ i ≤ k}. A solution to a given linkage problem L =
{{si, ti} : si, ti ∈ V (G), 1 ≤ i ≤ k} is a set of k internally disjoint paths P1, P2, . . . , Pk where the
endpoints of Pi are si and ti for all 1 ≤ i ≤ k. A graph G is k-linked if it has at least 2k vertices
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and if there exists a solution to every linkage problem of size k with pairwise disjoint subsets of size
two. By assuming a sufficient amount of connectivity, we can assume a given graph is k-linked.

Theorem 2.2 ([9]) Every 10k-connected graph is k-linked.

A graph G is strongly k-linked if every linkage problem of size k has a solution. It has been indepen-
dently shown by Mader [8] as well as by Liu, West, and Yu [5] that every k-linked graph on at least
2k vertices is also strongly k-linked. This immediately implies following corollary to Theorem 2.2.

Corollary 2.3 Every 10k-connected graph is strongly k-linked.

Corollary 2.3 can also be directly proven from Theorem 2.2 by a simple construction duplicating
vertices contained in multiple pairs of a given linkage problem.

3 Applications to removable path questions

Before proceeding with the proof of Theorem 2.1, we first examine several applications of the theorem
to problems arising from a collection of questions we will generally refer to as removable paths
conjectures. The following conjecture is due to Lovász:

Conjecture 3.1 (Lovász) There exists a function f(k) such that for every f(k)-connected graph G

and every pair of vertices s and t of G, there exists an s-t path P such that G−V (P ) is k-connected.

Progress on the conjecture so far has been limited, leading to the study of a variety of weaker versions
of the conjecture.

Conjecture 3.1 has been shown to be true for small values of k. The case when k = 1 is an
immediate consequence of Theorem 1.1. To see this, let G be a 3-connected graph and let u and v

be any pair of vertices of G. If we add the edge uv to the graph in the case u and v are not adjacent,
Theorem 1.1 implies that there exist paths P1 and P2, each of length at least two, such that every
bridge of the path system {P1, P2, uv} is stable. Either of the paths P1 or P2 can be deleted and
leave the remaining graph connected. A path P in a graph G where G− V (P ) is connected is called
a non-separating path. The k = 1 case of Conjecture 3.1 can be rephrased to state that there exists a
non-separating path connecting any pair of vertices, assuming the graph satisfies some connectivity
bound. Chen, Gould, and Yu [1] show in fact that a highly connected graph contains many internally
disjoint non-separating paths linking any pair of vertices.

Theorem 3.2 ([1]) Let k be a positive integer and let G be a (22k + 2)-connected graph. Then for
any pair of vertices u and v of G there exist k internally disjoint non-separating paths P1, P2, . . . , Pk

such that the endpoints of Pi are u and v for every 1 ≤ i ≤ k.
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We will see that by combining the proof of the k = 1 case of Conjecture 3.1 above with Theorem
1.2, we get a slight strengthening of Theorem 3.2 (albeit with a worse constant) as an easy corollary
to Theorem 1.2.

A path system {P1, P2, . . . , Pl} contained in a graph G is batch non-separating if for any subset
I ⊆ {1, 2, . . . , l} the graph G−

(⋃
i∈I V (Pi)

)
is connected.

Theorem 3.3 Let G be a 83(l + 1)-connected graph, and let x and y be two vertices in G. Then
there exists a path system P = {P1, P2, . . . , Pl} of x-y paths such that P is batch non-separating.

Proof. [Assuming Theorem 1.2]
Let G be a 83(l + 1)-connected graph and let x and y be two vertices of G. If we add the edge

xy in the case where x and y are not adjacent, we may assume that there exists a path system
P = {P1, P2, . . . , Pl+1, xy} of order l + 2 such that Pi has length at least two for 1 ≤ i ≤ l + 1.
Moreover, by the connectivity of G, we may assume that V (G) 6=

⋃l+1
1 V (Pi). The path system P is

(l + 1)-spread, and so Theorem 1.2 implies that there exists a path system P ′ = {P ′1, . . . , P ′l+1, xy}
consisting of l + 2 disjoint x-y paths such that every non-trivial P ′-bridge is l + 1-stable. It follows
that every non-trivial P ′-bridge must have at least one neighbor which is an internal vertex of P ′i for
all 1 ≤ i ≤ l + 1.

Given that V (G) 6=
⋃l+1

1 V (Pi), we see that there exists at least one non-trivial P ′-bridge.
We claim that the path system {P ′1, P ′2, . . . , P ′l } is batch non-separating. Consider for any subset
I ⊆ {1, . . . , l}, for every j /∈ I, the path P ′j−{x, y} must be in the same component of G−

⋃
i∈I V (Pi)

as the subpath Pl+1−{x, y} since there is a P ′-bridge with attachments in both. Thus G−
⋃

i∈I V (Pi)
is connected, as desired. �

Returning our attention to Conjecture 3.1, we have seen that the case k = 1 is true. The case
when k = 2 has been shown to be true as well by Kriesell [4] and independently by Chen et al [1]
where they show that every 5-connected graph contains a path linking any two vertices such that
deleting the path leaves the remaining graph 2-connected. The first open case is when k = 3. The
following theorem is due to Kawarabayashi, Reed, and Thomassen [3]. We recall that to subdivide
an edge e of a graph G, we simply replace the edge e by a path of length two. A subdivision of a
graph H is any graph which can be obtained from H by repeatedly subdividing edges.

Theorem 3.4 ([3]) There exists a constant c such that for every c-connected graph G and every
pair of vertices s and t of G, there exists an s-t path P and a 3-connected graph H such that such
that G− V (P ) is isomorphic to a subdivision of H.

Kawarabayashi et al prove Theorem 3.4 from first principles. We give the following short proof. In
this case, it will be more convenient to use the notation of Theorem 2.1.
Proof. [Assuming Theorem 2.1]
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Let c = 249, and let G be a c-connected graph. Fix the vertices s and t in G. Let H be a
3-connected graph and P an s-t path in G such that G − P contains a subgraph isomorphic to a
subdivision of H. Such a path P and graph H exist, since deleting a shortest s-t path results in a
subgraph with minimum degree larger than 3 which consequently contains a subdivision of K4 [2].

Assume such a subgraph H and path P are chosen to maximize |E(H)|. Let SH be the subgraph
of G−P isomorphic to a subdivision of H, and let X := {v ∈ V (SH) : degSH

(v) ≥ 3} ∪ {s, t} be the
set of vertices of SH of degree at least three and the vertices s and t. We may assume that every
(SH ∪P,X)-segment contained in SH is an induced path. The set X is a branch set for the subgraph
SH ∪ P . Consider the (SH ∪ P,X)-segments. Given that H is 3-connected, there exist two disjoint
(SH ∪ P,X)-segments in SH . Along with the third (SH ∪ P,X)-segment P , we see that there exist
three disjoint (SH ∪ P,X)-segments and that consequently the (SH ∪ P,X)-segments are 3-spread.
Thus by applying Theorem 2.1, we may assume that the trivial (SH ∪ P,X)-bridges are stable and
that the non-trivial (SH ∪ P,X)-bridges are 3-stable.

Define a non-trivial path R to be violating if the following conditions hold.

1. The endpoints x and y of R are contained in V (SH) and R has no internal vertex in V (SH) ∪
V (P ).

2. Every (SH ∪ P,X)-segment contains at most one of the vertices x and y.

We claim that no violating path exists. Assume, to reach a contradiction, that R is such a violating
path. The subgraph SH ∪ R forms a subdivision of a graph H ′ which is disjoint from P . If both
x and y are contained in X, then H ′ is obtained from H by adding an edge. It follows that H ′ is
3-connected and that |E(H ′)| > |E(H)|. This contradicts our choice of H. Alternatively, if one (or
both) of x and y is a vertex of degree two in SH , then H ′ is obtained from H by subdividing one (or
two) edges and adding an edge. Note that this operation preserves 3-connectivity, guaranteeing that
the resulting graph H ′ is in fact 3-connected. Again, |E(H ′)| > |E(H)|, contradicting our choice of
H. We conclude that no such violating path R exists.

Consider an (SH ∪ P,X)-bridge B with at least one attachment in V (SH). If B is non-trivial,
then by the 3-stability of B, there must exist a violating path contained in B, a contradiction. If B

is trivial and has both endpoints contained in V (SH), again by the stability of B, we see that B itself
would form a violating path, again a contradiction. We conclude that B is a trivial (SH ∪ P,X)-
bridge with exactly one endpoint in V (SH) and the other endpoint in P . Thus G− P is exactly the
subgraph SH , proving the theorem. �

4 Finding a Comb

A linkage is a path system such that the elements are pairwise disjoint. Given two sets X and Y in a
graph G, a linkage Q of paths in G is a linkage from X to Y if every element of Q has one endpoint in
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X and one endpoint in Y and is otherwise disjoint from X ∪Y . We will need to refer several times in
this section to the set of all endpoints of components of a given linkage. Given a linkage P contained in
a graph G, we define Ends(P) = {v ∈ V (G) : there exists P ∈ P such that v is an endpoint of P}.
Note that if P is a linkage of order k, then k ≤ |Ends(P)| ≤ 2k with the value depending on the
number of trivial elements of P. For the linkage P, we let Int(P) =

(⋃
P∈P V (P )

)
\Ends(P) be the

set of interior vertices.

Definition Let G be a graph and let P = {P1, . . . , Pl} be a path system of order l for some
positive integer l. Let the endpoints of Pi be labeled si and ti for all 1 ≤ i ≤ l. Note that si

and ti will not necessarily be distinct from either sj or tj . Let H be a subgraph of G such that
V (H)∩

(⋃l
1 V (Pi)

)
= ∅. An (H,P)-comb of order k consists of two linkages Q and R which satisfy

the following.

(i) Q = {Q1, . . . , Qk} is a linkage of order k and R = {R1, . . . , Rl′} is a linkage of order l′ for some
l′ ≤ l. Furthermore, |Ends(R)| = k and Q is an V (H)-Ends(R) linkage.

(ii) After possibly re-indexing the elements of P, we have the property that Ri is a subpath of Pi

for all 1 ≤ i ≤ l′. Moreover, no P-segment contains two distinct elements of R.

(iii) The linkageQ intersects P only in the vertices ofR, i.e.
(⋃k

1 V (Qi)
)
∩
(⋃l

1 V (Pi)
)
⊆
⋃l′

1 V (Ri).

Combs were first introduced in [10], although with different notation and in a slightly different context
where the path system P is assumed to be a linkage and the subgraph H is allowed to intersect the
linkage P.

The main result of this section will be to provide a necessary and sufficient condition for the
existence of an (H,P)-comb in a given graph G. We first prove the following lemma.

Lemma 4.1 Let k, l ≥ 1 be positive integers and let P = {P1, . . . , Pl} be a path system of order l

contained in a graph G. Let H be a subgraph of G−
(⋃l

1 V (Pi)
)

. Let Q and R form an (H,P)-comb
of order k. Then there exists an (H,P)-comb given by Q′ and R′ such that either

(i) Q′ and R′ form an (H,P)-comb of order k + 1, for all R ∈ R there exists an R′ ∈ R′ such that
V (R) ⊆ V (R′), and furthermore, ||R| − |R′|| ≤ 1. Or, alternatively,

(ii) Q′ and R′ form an (H,P)-comb of order k, there exists a separation (A, B) of order k such
that V (H) ⊆ B,

(⋃l
1 V (Pi)

)
\ Int(R′) ⊆ A.

Proof. Let P = {P1, . . . , Pl} and H be given. Let the linkages Q = {Q1, . . . , Qk} and R =
{R1, . . . , Rl′} form an (H,P)-comb of order k. We pick an (H,P)-comb given by Q′ = {Q′1, . . . , Q′k}
and R′ = {R′1, . . . , R′l′} of order k such that for all 1 ≤ i ≤ l′, we have that Ri is a subpath of R′i.
Moreover, assume we have selected Q′ and R′ over all such (H,P)-combs to maximize

∑
R∈R′ |V (R)|.

Assume that R′i is a subpath of Pi for 1 ≤ i ≤ l′. Let Z =
(⋃l

1 V (Pi)
)
\ Int(R′). Let Y be the set
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of endpoints of Q′ in V (H). Note that by definition, the set of endpoints of Q′ in Z is exactly the
set Ends(R′). If there exists a separation (A, B) of order exactly k with Z ⊆ A and V (H) ⊆ B,
the separation (A, B) satisfies (ii) and the lemma is proven. Alternatively, there exist k + 1 vertex
disjoint V (H)-

⋃l
1 V (Pi) paths Q̄1, . . . , Q̄k+1 and a vertex z ∈ Z\Ends(R′) and a vertex u ∈ V (H)\Y

such that each Q̄i has one endpoint in Ends(R′) ∪ {z} and one endpoint in Y ∪ {u}.
As a case, assume there exists an index i ≤ l′ such that z ∈ V (Pi). Note that R′i is a subpath of

Pi, and moreover, R′i is the unique component of R′ completely contained in Pi by the definition of
an (H,P)-comb. Let R̄ be the minimal subpath of Pi containing both the vertex z and the subpath
R′i. Let i′ be the index such that Q̄i′ has an endpoint contained as an internal vertex of the path R̄,
if such an index exists. Note that since R̄ contains at most one vertex of Ends(R′) as an internal
vertex, we have that if i′ is defined, then there is a unique such index. If the index i′ is not defined,
then {Q̄1, . . . , Q̄k+1} and (R′ \ {R′i}) ∪ {R̄} yields an (H,P) comb of order k + 1 satisfying (i). If
instead i′ is defined, then {Q̄1, . . . , Q̄k+1} \ {Q̄i′} and (R′ \ {R′i}) ∪ {R̄} forms an (H,P)-comb of
order k violating our choice Q′ and R′ to maximize

∑
R∈R′ |V (R)|.

We conclude that z ∈ Pi for some index i > l′. In this case, we see that {Q̄1, . . . , Q̄k+1} and
R′ ∪ {z} form an (H,P)-comb of order k + 1 satisfying (i). This completes the proof of the lemma.
�

We now give the characterization of when a given path system P and subgraph H admit a comb.

Lemma 4.2 Let P = {P1, . . . , Pl} be a path system of order l for some positive integer l contained in
a graph G. Let H be a subgraph of G−

(⋃l
1 V (Pi)

)
. For all k ≥ 1, either there exists an (H,P)-comb

of order k, or there exists a subset I ⊆ {1, . . . , l} and a linkage R = {Ri : i ∈ I} with |Ends(R)| < k

which satisfy the following.

(i) For all i ∈ I, Ri is a subpath of Pi.

(ii) There exists a separation (A, B) such that V (H) ⊆ B and
(⋃l

1 V (Pi)
)
\ Int(R) ⊆ A.

Proof. The proof proceeds by repeatedly applying Lemma 4.1. To see that there exists an (H,P)-
comb, first note that a single V (H) −

⋃l
1 V (Pi) path Q with R equal to the single vertex V (Q) ∩(⋃l

1 V (Pi)
)

forms an (H,P)-comb of order 1. If no such comb of order one exists, then there exists

a separation (A, B) of order 0 with
⋃l

1 V (Pi) ⊆ A and V (H) ⊆ B satisfying the statement of the
lemma.

Thus, by inductively applying Lemma 4.1, either we find an (H,P)-comb of order k, or the
process terminates for some k′ < k, and outcome (ii) of Lemma 4.1 ensures we satisfy (ii) above. �

5 Proof of Theorem 2.1 and a lower bound

The proof of Theorem 2.1 will require the following classic theorem of Mader.
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Theorem 5.1 ([7]) Every graph with minimum degree at least 4k contains a k-connected subgraph.

We will also require some basic observations about k-spread path systems. The proof follows
immediately from the definition of k-spread, and we omit it here.

Observation 5.2 Let S and S′ be subgraphs of a graph G, and let X be a set of branch vertices
for both S and S′. Let k ≥ 1 be a positive integer. Assume that the (S, X)-segments are equivalent
to the (S′, X)-segments. Then (S, X)-segments are k-spread if and only if the (S′, X)-segments are
k-spread. Let X ′ be a set of branch vertices of S with X ⊆ X ′. If the (S, X)-segments are k-spread,
then the (S, X ′)-segments are k-spread as well.

We now proceed with the proof of Theorem 2.1.
Proof. [Theorem 2.1]

Let k be a positive integer and let S be a subgraph of G. Let X be a branch set of S, and let
the (S, X)-segments be given by the path system P = {P1, . . . , Pt}. Assume that P is k-spread.

Let S′ be a subgraph of G such that X is a branch set of S and if we let P ′ = {P ′1, . . . , P ′t} be
the path system of (S′, X)-segments, then we have the property that P and P ′ are equivalent. Let
the endpoints of P ′i be s′i and t′i. Furthermore, assume we pick S′ such that

(a) for all i, if Pi has length at least two and s′i is adjacent to t′i, then there exists j such that Pj

is equal to the edge s′it
′
i;

(b) subject to (a), the number of vertices contained in k-stable (S′, X)-bridges is maximized, and

(c) subject to (a) and (b), the number of vertices in |V (S′)| is minimized.

We begin by observing some immediate implications of our choice of graph S′ to satisfy (a)-(c).
First, property (a) ensures that we begin by selecting an induced simplification of P.

We claim that no trivial (S′, X)-bridge has both endpoints contained in a single (S′, X)-segment.
Assume otherwise and let xy be an edge of E(G) \E(S′) such that both x and y are contained in P ′j
for a fixed index j. If we label the endpoints of P ′j as s′j and t′j , then we can replace P ′j in S′ with
the segment s′jP

′
jxyP ′jt

′
j to find a subgraph S′′ such that the set of (S′′, X)-segments is equivalent to

the set of (S′, X)-segments. By (a), it follows that at least one of x and y is not in {s′j , t′j}. Thus
any k-stable (S′, X)-bridge that has an attachment as an internal vertex of xP ′jy is contained in an
(S′′, X)-bridge with an internal vertex of s′jP

′
jxyP ′jt

′
j as an attachment. Consequently, any vertex

contained in a k-stable (S′, X)-bridge is also contained in a k-stable (S′′, X)-bridge. Thus, S′′ has
fewer vertices than S′ and satisfies (a) and (b). We violate our choice of (c), proving the claim.

Property (c) implies that if a vertex v ∈ V (G)\V (S′) is not contained in a k-stable (S′, X)-bridge,
then v has at most 3(k − 1) neighbors in V (S′). Otherwise, v would have at least four neighbors in
a single segment and it would be possible to shorten the segment by routing through the vertex v

while at the same time not decreasing the number of vertices contained in k-stable bridges.
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Lest the theorem be proven, we may assume that there exists some non-trivial (S′, X)-bridge
which is not k-stable. We will define a larger set of branch vertices for S′. Let

Y = {v ∈ V (S′) : v is an attachment of a k-stable (S′, X)-bridge}.

We let
X = X ∪ Y.

Let s be a positive integer and let P = {P1, P2, . . . , Ps} be the path system of (S′, X)-segments.
By Observation 5.2, the path system P is k-spread. Moreover, by our above claim that no edge of
E(G) \E(S′) has both endpoints in a single (S′, X)-segment, we see that (S′, X) is its own induced
simplification, and consequently, there do not exist k−1 (S′, X)-segments which cover all the vertices
of S′.

Let G′ be the subgraph of G induced by V (S′) as well as the vertices of any (S′, X)-bridge that
is not k-stable. Let B be a non-trivial (S′, X)-bridge in G′. Since B is also a (S′, X)-bridge in G,
we see that for any vertex v of V (B) \ V (S′), v has at most 3(k − 1) neighbors in V (S′). It follows
from Theorem 5.1 that G[V (B) \ V (S′)] contains a 20k-connected subgraph H.

We select an (H,P )-comb given by linkages Q and R of order at most 2k such that R is a linkage
of order exactly k. We can obtain such a comb by repeatedly applying Lemma 4.1. To see this, first
observe that if we were to find the separation (A, B) in outcome (ii) of the lemma, it would follow
the separation is trivial by the connectivity of G. Since H has strictly more than 2k vertices, we
see that

⋃s
1 V (Pi) is contained in the linkage R′ of outcome (ii). Consequently, there exists a subset

I ⊆ {1, . . . , s}, |I| < k such that
⋃s

1 V (Pi) ⊆
⋃

R∈R′ V (R) ⊆
⋃

i∈I V (Pi), contrary to the fact that P
is k-spread. Thus, in each application of Lemma 4.1, we grow the comb until we find an (H,P)-comb
Q and R with R of order exactly k.

Let R = {R1, . . . , Rk}. We fix values k1 and k2 with 0 ≤ k1 ≤ k2 ≤ k such that after possibly
re-indexing the components of R, we have that for 1 ≤ i ≤ k1, Ri is a path of length at least two.
For k1 < i ≤ k2, Ri is a path of length one, and for k2 < i ≤ k, Ri is a trivial path consisting of a
single vertex. Then Q is a linkage of order k + k2. Let Q = {Q1, . . . , Qk+k2}. We assume that the
endpoints of Q2i−1 and Q2i are equal to the ends of Ri for 1 ≤ i ≤ k2, and that the trivial path Ri

is the end of Qi for 2k2 < i ≤ k + k2. We let the end of Qi in V (H) be labeled qi for 1 ≤ i ≤ k + k2.
By the fact that H is 20k-connected, we see that H is strongly 2k-linked by Corollary 2.3. Thus

there exists a vertex v disjoint from Ends(Q) ∩ V (H) and path systems Q′ = {Q′1, . . . , Qk} and
R′ = {R′1, . . . , Rk1} such that the elements of R′ and Q′ are pairwise internally disjoint and satisfy
the following. For 1 ≤ i ≤ k2, Q′i has one endpoint equal to v and one endpoint equal to q2i−1, and
for k2 < i ≤ k, Q′i has one endpoint equal to q2k2+1 and one endpoint equal to v. For 1 ≤ i ≤ k + k2

and R′i has endpoints q2i−1 and q2i for 1 ≤ i ≤ k1.
We let S be the subgraph of G obtained from S′ by deleting the interior vertices of the paths Ri

for 1 ≤ i ≤ k1 and adding the paths Q2i−1 ∪ q2i−1R
′
iq2i ∪Q2i for 1 ≤ i ≤ k1. By construction, there

exists an (S,X)-bridge in G′ which has as attachments the vertices qi for 1 ≤ i ≤ 2k1 as well as the
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vertices
⋃

k1<i≤k V (Ri), namely the bridge which contains the vertex v we selected in H. Label this
bridge B. The bridge B is an (S,X)-bridge both in the subgraph G′ as well as in G. If we look at
the branch set X, then the set of (S,X)-segments are equivalent to the set of (S′, X)-segments. We
satisfy (a) by the fact that we only re-routed segments of length at least two. Moreover, any vertex
of G which is contained in a k-stable (S′, X)-bridge is also contained in a k-stable (S,X)-bridge by
the fact that we rerouted the segments to preserve the relative positions of the vertices X \X.

If B is a k-stable bridge in (S,X), then we contradict our choice of S′ to satisfy (b). Thus, there
exist k − 1 (S,X)-segments which contain all the attachments of B. This implies as well that there
exist k − 1 (S′, X)-segments which contain every element of the path system R, and consequently,
some (S′, X)-segment contains two distinct Ri and Rj . Given that Ri and Rj are not contained in
a single (S′, X)-segment, they must be separated by a vertex of X \X on the (S′, X)-segment. We
conclude that there exists a (S,X)-segment T and vertex x ∈ X \X contained in T such that B has
attachments in both components of the T −x. By deleting a subpath T which contains x and adding
a subpath through the bridge B, we find a new subgraph S′′ such that the set of (S′′, X)-segments is
equivalent to the set of (S′, X)-segments which satisfies (a), satisfies the property that every vertex
in a k-stable (S′, X)-bridge is in a k-stable (S′′, X)-bridge, and in addition, the vertex x is also
contained in a k-stable (S′′, X)-bridge (specifically the k-stable (S′, X)-bridge which attached to x

“grows” to include the vertex x). Thus S′′ violates our choice of S′, a contradiction.
In conclusion, we note that as a byproduct of the proof, if there exists at least one (S, X)-bridge,

then the there will exist at least one non-trivial (S′, X)-bridge as well. This completes the proof of
the theorem. �

It would be interesting to know the best possible connectivity function in Theorem 2.1. The large
connectivity function obtained in the proof Theorem 2.1 is a consequence of two factors: first, the
linkage property used to analyze the highly connected subgraph H, and second, the large number of
paths contained in the comb. It is certainly possible that more careful analysis in the proof or an
improved connectivity bound for graph linkages would allow one to improve the overall connectivity
function in the statement of Theorem 2.1. However, this approach would still likely fail to approach
the best known lower bound for the connectivity function of Theorem 2.1.

Consider two large complete graphs G1 and G2. Pick two subsets of 2k − 2 vertices in each and
identify them to create a graph G. Let our system of paths in G consist of k − 1 disjoint edges in
the intersection of the two cliques as well as an additional l disjoint edges from G1 disjoint from the
vertices of G2. It is impossible to reroute the paths so that every non-trivial bridge is k-stable, as
the bridge containing the vertices unique to G2 will only have attachments in the k− 1 paths of the
intersection. This example shows that the best possible connectivity function that could be hoped
for in Theorem 2.1 would be 2k − 1. Interestingly, this is the value obtained in the k = 2 case in
Theorem 1.1 of Tutte.
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Math. Sem. Univ. Hamburg 37 (1972), 86–97.

[8] W. Mader, Topological minors in graphs of minimum degree n, DIMACS Series in Discrete Math. and Theoretical

Comp. Sci. 49 (1999) 199 - 211.

[9] R. Thomas and P. Wollan, An improved linear edge bound for graph linkages, Europ. J. of Combinatorics, 26

(2005), 309 - 324.

[10] R. Thomas and P. Wollan, The extremal function for 3-linked graphs, J. Combin. Theory, ser. B 98 (2008),

939-971.

[11] W. T. Tutte, Graph Theory, Addison-Wesley, Menlo Park, CA, 1984.

13


