Packing Disjoint A-paths with Specified Ends

Paul Wollan

University of Rome "Sapienza"

k-matching problem: does there exist

a matching of size k:

equivalent formulation: do there exist k pairwise vertex disjoint paths?

Fix a subset A of V(G). An A-path is a path with both ends in A and no internal vertex in A.

Question: do there exist k disjoint A-paths?

It is **not true** that the max number of disjoint A-paths = min size hitting set

<u>Theorem</u>: (Gallai '62) there exists a min-max formula for the maximum number of disjoint A-paths.

A generalization: fix a partition of A and look for disjoint A-paths with ends in distinct subsets of the partition.

Theorem: (Mader '78) there exists a min-max formula for max number of disjoint A paths respecting a partition.

Other generalizations:

- Disjoint A-paths of odd length.
- (Chudnovsky, Geelen, Gerards, Goddyn, Lohman, Seymour '06) – Disjoint non-zero A-paths in group labeled graphs.
- (Wollan '10) Disjoint A-paths of non-zero length mod m.

A generalization: fix a partition of A and look for disjoint A-paths with ends in distinct subsets of the partition.

Theorem: (Mader '78) there exists a min-max formula for max number of disjoint A paths respecting a partition.

A new model: Given G, A a subset of V(G), and labels $\{(s_i, t_i): 1 \le i \le r\}$, do there exist k disjoint A-paths P_1, \ldots, P_k such that the endpoints of Pi are s_j and t_j for some j

Think of the labels $\{(s_i, t_i): 1 \le i \le r\}$ as edges in an auxiliary graph D with vertex set A. Call it the **demand** graph.

Question: Given G, A a subset of V(G), and demand graph D with V(D) = A, do there exist k disjoint D-satisfying A-paths.

k-disjoint paths problem

Input: G and k pairs of vertices s₁, t₁,....,s_k, t_k.

Output: k disjoint paths $P_1, ..., P_k$ such that P_i links s_i and t_i , or determine that no such paths exist.

Polynomial time algorithm for fixed k (RS 03), but very hard and complicated proof.

Conclusion: we can't expect a min-max formula.

Question 2: Does there exist a function f such that given G, a subset A of V(G) and D with V(D) = A, either

- 1. There exist k disjoint D-satisfying A-paths, or
- 2. There exist f(k) vertices hitting every D-satisfying A-path.

Question 2: NO

Let G be the r x r grid; A is the first and last row; D a matching of size r as shown.

∄ 2 disjoint D-satisfying A-paths, but takes r/2 vertices to intersect them all.

Question 3: Given a set F of graphs, does there exist a function f_F such that given G, a subset A in V(G) and D in F with V(D) = A, either

- 1. There exist k disjoint D-satisfying A-paths, or
- 2. There exist f_F(k) vertices hitting every D-satisfying A-path.

Say F has the demand constrained A-path packing property - DCAPP

Prop: Let M_t be the matching with t edges. Then $M = \{M_t: t \ge 1\}$ does not have the demand-constrained Apath packing property.

F a set of graphs. Let \overline{F} be the set of graphs obtained by taking all induced subgraphs of elements of **F**.

F has the demand constrained packing property if and only \overline{F} does.

Prop: **F** has the demand constrained packing property if and only \overline{F} does.

Assume **F** has DCAPP. Let \overline{D} be a graph in \overline{F} with \overline{D} a subgraph of D in **F**.

$$\overline{G} - \overline{A}$$

Add isolated vertices to A to get a new graph G with D a subgraph.

There exist k disjoint \overline{D} -satisfying paths in \overline{G} if and only if there exist k disjoint D-satisfying paths in G.

Theorem (Marx, W) Let **F** be a set of graphs closed under taking induced subgraphs. **F** has the demand constrained A-path packing property if and only if there exists t such that M_t is not in **F**.

There is an algorithm which either finds the paths or hitting set running in time g(k)n^c for some function g and constant c.

M_t the graph consisting of a matching with t edges.

Proof ideas: Pick a counterexample with k minimal.

There is no small cut in G - A separating two D-satisfying A-paths

There is no small cut in G - A separating two D-satisfying A-paths.

This defines a tangle in G-A.

The proof proceeds using concepts of tangles and treewidth but avoids many of the technicalities usually accompanying this type of argument. Future directions: algorithmic questions

Can we characterize **F** such that given graph G, A, and D ∈ **F** with V(D) = A:

- In time f_F(k)n^c, we can either find k D-satisfying A-paths or determine that they do not exist. (Theorem with Marx).
- In polynomial time (for arbitrary k) either find k Dsatisfying A-paths or determine that they do not exist.