Packing Disjoint A-paths with Specified Ends

Paul Wollan

University of Rome “Sapienza”
k-matching problem: does there exist a matching of size k:

Equivalent formulation: do there exist k pairwise vertex disjoint paths?
Fix a subset A of $V(G)$. An **A-path** is a path with both ends in A and no internal vertex in A.

Question: do there exist k disjoint A-paths?
It is not true that the max number of disjoint A-paths = min size hitting set
Theorem: (Gallai ‘62) there exists a min-max formula for the maximum number of disjoint A-paths.
A generalization: fix a partition of A and look for disjoint A-paths with ends in distinct subsets of the partition.

Theorem: (Mader ‘78) there exists a min-max formula for max number of disjoint A paths respecting a partition.
Other generalizations:

- Disjoint A-paths of odd length.
- (Chudnovsky, Geelen, Gerards, Goddyn, Lohman, Seymour ‘06) – Disjoint non-zero A-paths in group labeled graphs.
- (Wollan ’10) – Disjoint A-paths of non-zero length mod m.
A generalization: fix a partition of A and look for disjoint A-paths with ends in distinct subsets of the partition.

Theorem: (Mader ‘78) there exists a min-max formula for max number of disjoint A paths respecting a partition.
A new model: Given G, A a subset of V(G), and labels \{\(s_i, t_i\): \(1 \leq i \leq r\}\), do there exist \(k\) disjoint A-paths \(P_1, \ldots, P_k\) such that the endpoints of \(P_i\) are \(s_j\) and \(t_j\) for some \(j\).
Think of the labels \(\{(s_i, t_i): 1 \leq i \leq r\} \) as edges in an auxiliary graph \(D \) with vertex set \(A \). Call it the demand graph.
Question: Given G, A a subset of $V(G)$, and demand graph D with $V(D) = A$, do there exist k disjoint D-satisfying A-paths.
k-disjoint paths problem

Input: G and k pairs of vertices $s_1, t_1, \ldots, s_k, t_k$.

Output: k disjoint paths P_1, \ldots, P_k such that P_i links s_i and t_i, or determine that no such paths exist.

Polynomial time algorithm for fixed k (RS 03), but very hard and complicated proof.

Conclusion: we can’t expect a min-max formula.
Question 2: Does there exist a function f such that given G, a subset A of $V(G)$ and D with $V(D) = A$, either
1. There exist k disjoint D-satisfying A-paths, or
2. There exist $f(k)$ vertices hitting every D-satisfying A-path.
Question 2: **NO**

Let G be the $r \times r$ grid; A is the first and last row; D a matching of size r as shown.

There are no 2 disjoint D-satisfying A-paths, but takes $r/2$ vertices to intersect them all.
Question 3: Given a set \mathbf{F} of graphs, does there exist a function $f_{\mathbf{F}}$ such that given G, a subset A in $V(G)$ and D in \mathbf{F} with $V(D) = A$, either

1. There exist k disjoint D-satisfying A-paths, or

2. There exist $f_{\mathbf{F}}(k)$ vertices hitting every D-satisfying A-path.

Say \mathbf{F} has the demand constrained A-path packing property - DCAPP
Prop: Let M_t be the matching with t edges. Then $\mathbf{M} = \{M_t : t \geq 1\}$ does not have the demand-constrained A-path packing property.
\mathbf{F} a set of graphs. Let \overline{F} be the set of graphs obtained by taking all induced subgraphs of elements of \mathbf{F}.

\mathbf{F} has the demand constrained packing property if and only \overline{F} does.
Prop: \(F \) has the demand constrained packing property if and only if \(\overline{F} \) does.

Assume \(F \) has DCAPP. Let \(\overline{D} \) be a graph in \(\overline{F} \) with \(\overline{D} \) a subgraph of \(D \) in \(F \).

\[
\overline{G} - \overline{A}
\]
Add isolated vertices to A to get a new graph G with D a subgraph.

There exist k disjoint \overline{D}-satisfying paths in \overline{G} if and only if there exist k disjoint D-satisfying paths in G.
Theorem (Marx, W) Let F be a set of graphs closed under taking induced subgraphs. F has the demand constrained A-path packing property if and only if there exists t such that M_t is not in F.

There is an algorithm which either finds the paths or hitting set running in time $g(k)n^c$ for some function g and constant c.

M_t the graph consisting of a matching with t edges.
Proof ideas: Pick a counterexample with k minimal.

There is no small cut in $G - A$ separating two D-satisfying A-paths
There is no small cut in G - A separating two D-satisfying A-paths.

This defines a **tangle** in G-A.

The proof proceeds using concepts of tangles and tree-width but avoids many of the technicalities usually accompanying this type of argument.
Future directions: algorithmic questions

Can we characterize F such that given graph G, A, and $D \in F$ with $V(D) = A$:

- In time $f_F(k)n^c$, we can either find k D-satisfying A-paths or determine that they do not exist. (Theorem with Marx).

- In polynomial time (for arbitrary k) either find k D-satisfying A-paths or determine that they do not exist.