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Question:  What do graphs with no Kt minor look like?

Theorem: (RS ’03) For every t, there exists an α = α(t) such 
that every graph with no Kt minor can be constructed by 
repeated α sums of graphs which are α-near embedded in a 
surface ∑ in which Kt does not embed

• Global tree-like structure with pieces based on a 
parameterized near-embeddings in a surface.
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Some difficulties to working with the structure theorem:

• Many technicalities and a long and difficult proof.

• Astronomical (and unknown) constants a drawback 
to algorithmic applications.

What if we want a local “well-behaved” subgraph instead 
of a global decomposition of the whole graph?
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Question:  What do graphs with: 
no Kt minor 

look like?

Answer 1:  they could have bounded tree-width.

A tree decomposition of a graph G breaks G up into a 
tree-structure of constant sized subsets of vertices.

Graphs of bounded tree-width are nice:

• simple decomposition;

• algorithmically well behaved.
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Question:  What do graphs with 
no Kt minor and large tree-width

look like?

This is the question answered by the 
Weak Structure Theorem of RS

• Basis of several important applications: RS minor 
testing algorithm, testing for subdivisions.

• New direct proof with explicit constants.
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Theorem: (RS ’86) For every r, there exists an w such that if a 
graph G has tree-width at least w, then G contains the r × r 
grid as a minor.

r-wall is obtained from 2r × r grid by deleting odd vertical edges 
in the odd rows and even vertical edges in the even rows.

Corners of the wall
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Corollary:  For every r, there exists a w such that if a graph 
has tree-width at least w, then it contains as a subgraph a 
subdivision of an r-wall.

Assume G has no Kt minor and does have a big r-wall 
subdivision subgraph W.  How does G-W attach to W?
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G has no Kt minor and a subdivision of r-wall (r >>t).
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G has no Kt minor and a subdivision of r-wall (r >>t).

1. Many components of G-W have attachments all over W.
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G has no Kt minor and a subdivision of r-wall (r >>t).

2.  Many disjoint W-paths, each with endpoints in distinct 
faces.
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If we have many such W-paths,  ∃ an r’ × r’ grid minor 
with crosses in the middle row of faces.

r’ ≥ t2 ⇒ G contains Kt as 
a minor, contradiction 
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Conclusion:  G-W must attach to W in a way that respects 
the planarity of W.
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Conclusion:  G-W must attach to W in a way that respects 
the planarity of W.

Z

•  Find a subwall W’ 
whose boundary 
separates “internal” 
planar subgraph in 
G-Z?

•  Perhaps we can 
delete a bounded set Z 
of vertices such that:
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No:  Take a wall and glue a K5 clique onto each vertex.

•  Can’t delete bounded number of vertices and find 
a genuinely planar subwall.

K5 K5 K5 K5

K5

K5

K5

K5

K5

K5

K5 K5

K5K5 K5

K5
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Conclusion:  We need “planarity up to ≤ 3 separations”.

C a cycle in G:  G is C-flat if ∃ 
G0,...,Gk, Γ such that:
1. G = G0 ∪ G1 ∪ .... ∪ Gk

2. C ⊆ G0, Γ is a plane graph with      
G0 ⊆ Γ and V(G0) = V(Γ);

3. C bounds a face of Γ;

4. |V(Gi) ∩ V(G0)| ≤ 3 and vertices of 
V(Gi) ∩ V(G0) are pairwise adjacent and 
co-facial in Γ;

5. Gi ∩ Gj ⊆ V(G0).

G1

G2

G3

� = R+G+Bl
G0 = G+Bl
C = G
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A wall W with boundary cycle C is flat in G if there 
exists  a separation (A, B) such that
1. A ∩ B ⊆ V(C) and W ⊆ G[B];

2. C’ is the cycle on A ∩ B given by C, then G[B] is C’-flat.

It is non-trivially flat if the corners of W are contained in 
A ∩ B
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Example of a flat wall
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A

Example of a flat wall
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Theorem: For every r, t ≥ 1, r even, let R = 49152t24(12t2+ r), 
let G be a graph and W an R-wall in G.  Then either G has a 
Kt minor (grasped by W) or there exists a set X ⊆ V(G) with     
|X| ≤ 12288t24 and an r-subwall W’ of W such that            
V(W’) ∩ X = ∅ and W’ is a non-trivial flat wall in G-X.

Robertson Seymour showed a qualitative version in GM 13 
(Theorem 9.8).

Giannopoulou and Thilikos showed a version with a linear 
dependence in r for fixed t.

Saturday, March 23, 13



Why “Weak Structure Theorem” - Applications

• Basis of the RS algorithm for disjoint paths and 
minor testing.

• Inductive base case of KTW proof of the full Graph 
Minor Structure Theorem.

• Recent FPT algorithm for testing subdivision 
containment by Grohe, Kawarabayashi, Marx, W.

• Recent shorter algorithm for finding Graph Minor 
Decomposition of Grohe, Kawarabayashi, Reed.
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3 Main Tools of the Proof:

• Lemma on disjoint W-paths with endpoints pairwise 
far apart.

• Theorem of RS for the 2-disjoint paths problem.

• Principle: if something happens often enough, then 
it happens many times in the same way.
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1.  Disjoint W-paths

H a subgraph of G, then an H-path is a path P with ends in 
V(H), no internal vertex in H, and E(P) ∩ E(H) = ∅.

W

P

Saturday, March 23, 13



W a wall, x,y ∈ V(W), let dW(x,y) be the minimum number of 
times a curve in the plane from x to y intersects W.

W
x

y

dW (x, y) = 3 dW (x0
, y

0) = 2

x

0

y0
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We would like an EP-result for t-semi-dispersed paths...

Impossible:

Disjoint W-paths P1,...,Pk are t-semi-dispersed if we can 
label the ends of Pi as xi and yi such that:  dW(xi,yi) ≥ t  and 
dW(yj,yi) ≥ t.
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Lemma: Given W and t,k ≥ 1, either there exist disjoint W-
paths P1,...,Pk which are t-semi-dispersed, or there exists a 
set X, |X| ≤ k-1 and Z ⊆ V(W), |Z| ≤ 3k-3, such that every W-
path P with ends x and y, either has dW(x,y) ≤ t, V(P) ∩ X ≠ ∅, 

or both x and y are contained in ∪z ∈ Z Bt(z) 

Given W, t ≥1, x ∈ V(W), let Bt(x) = {y: dW(x,y) ≤ t}
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Even if no bounded set hits all long paths, two balls cover 
the ends of every long path.
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2.  RS theorem for 2-disjoint paths

Theorem (RS):  G a graph and s1,s2,t1,t2 vertices, then there 
exist disjoint paths P1,P2 such that the ends of Pi are si and ti 
if and only if G is not C-flat where C is the cycle on vertices 
s1,s2,t1,t2.
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3.  If something happens often enough, 
it happens many times in the same way

Theorem:  Let t,k ≥ [x1,y1],...,[xk,yk] be k intervals on the real 
line.  If k ≥ t2, then either there exist t pairwise disjoint 
intervals, or there exists z contained in t distinct intervals.  
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Easier statement: There exists a polynomial functions f 
satisfying the following.   Let P1,...,Pk, k ≥ f(t), be pairwise 
disjoint W-paths with endpoints contained in a set X ⊆ V(W) 
for a grid W.  If the vertices of X are pairwise at distance f(t), 
then W ∪ P1 ∪...∪ Pk contains Kt as a minor.

Theorem: There exists a polynomial function f such that if 
P1,...,Pk, k ≥ f(t), are pairwise disjoint f(t)-semi-dispersed W-
paths on a wall W, then W ∪ P1 ∪...∪ Pk contains Kt as a minor.
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•  ∃ at most one endpoint 
within dist t2 of the boundary.  
Delete it.
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•  At least half the line segs 
have slope m with 0 ≤ m < ∞.
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•  At least half the line segs 
have slope m with 0 ≤ m < ∞.

• Apply interval lemma to x-
axis intervals of the segments.

• If we have t2 disjoint 
intervals, we find as a minor 
the 2t2 grid with crosses in the 
middle face.
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have slope m with 0 ≤ m < ∞.

• Apply interval lemma to x-
axis intervals of the segments.
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• Otherwise, we have many 
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point z.  Split the grid into two 
halves along the x=z vertical 
line.

z

Saturday, March 23, 13



•  ∃ at most one endpoint 
within dist t2 of the boundary.  
Delete it.

•  At least half the line segs 
have slope m with 0 ≤ m < ∞.

• Apply interval lemma to x-
axis intervals of the segments.

• If we have t2 disjoint 
intervals, we find as a minor 
the 2t2 grid with crosses in the 
middle face.

• Otherwise, we have many 
intervals containing a common 
point z.  Split the grid into two 
halves along the x=z vertical 
line.

z

Saturday, March 23, 13



•  ∃ at most one endpoint 
within dist t2 of the boundary.  
Delete it.

•  At least half the line segs 
have slope m with 0 ≤ m < ∞.

• Apply interval lemma to x-
axis intervals of the segments.

• If we have t2 disjoint 
intervals, we find as a minor 
the 2t2 grid with crosses in the 
middle face.

• Otherwise, we have many 
intervals containing a common 
point z.  Split the grid into two 
halves along the x=z vertical 
line.

Saturday, March 23, 13



•  ∃ at most one endpoint 
within dist t2 of the boundary.  
Delete it.

•  At least half the line segs 
have slope m with 0 ≤ m < ∞.

• Apply interval lemma to x-
axis intervals of the segments.

• If we have t2 disjoint 
intervals, we find as a minor 
the 2t2 grid with crosses in the 
middle face.

• Otherwise, we have many 
intervals containing a common 
point z.  Split the grid into two 
halves along the x=z vertical 
line.

Saturday, March 23, 13



Outline of the proof of the
Weak Structure Theorem

1.  Apply the semi-dispersed paths lemma to the wall.  

2.  If there exist f1(t)-semi-dispersed set of f2(t) disjoint W-
paths, then we find the Kt minor for appropriately chosen 
polynomials f1 and f2.

3.  Otherwise, there exists a bounded set X and bounded 
number of balls B1,...,Bk hitting all long W-paths.
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Thus, there exists a wide horizontal strip S of the wall 
avoiding all the balls B1,...,Bk as well as X.

{S Wi Wi+1

Let Wi be (r+poly(t))-walls in the center of the strip spaced 
poly(t) apart.  
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If some Hi does not have the desired paths, we find a 
smaller flat subwall inside.  

{S Wi Wi+1

Apply the 2-paths theorem to each Wi (and the bridges 
attaching to Wi ) along with the four corners.  
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An algorithm

Theorem: There exists an algorithm with
Input: a graph G on n vertices and m edges, r, t ≥ 1, and a R-wall 
W,R = 50000t24(24t2 + r)
Output: either a Kt minor grasped by W or a set A, |A| ≤ 12288t24 
and a nontrivially flat r-subwall of W’ with V(W’) ∩ A = ∅.  
Runtime: O(t24m + g(n,m)) where g(n,m) is the runtime for the 2-
disjoint paths algorithm.

The 2 disjoint paths problem:

• RS showed a O(nm) time algorithm.

• Kapadia, Li, Reed announced O(m) but unpublished.
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