A New Proof for the Weak-Structure Theorem with Explicit Constants

Paul Wollan

Joint work with K. Kawarabayashi and R. Thomas

Question: What do graphs with no Kt minor look like?

Theorem: (RS '03) For every t, there exists an $\alpha = \alpha(t)$ such that every graph with no K_t minor can be constructed by repeated α sums of graphs which are α -near embedded in a surface \sum in which K_t does not embed

• Global tree-like structure with pieces based on a parameterized near-embeddings in a surface.

Some difficulties to working with the structure theorem:

- Many technicalities and a long and difficult proof.
- Astronomical (and unknown) constants a drawback to algorithmic applications.

What if we want a local "well-behaved" subgraph instead of a global decomposition of the whole graph?

Question: What do graphs with: no K_t minor

look like?

Answer 1: they could have bounded tree-width.

A tree decomposition of a graph G breaks G up into a tree-structure of constant sized subsets of vertices.

Graphs of bounded tree-width are **nice**:

- simple decomposition;
- algorithmically well behaved.

Question: What do graphs with no K_t minor and large tree-width look like?

This is the question answered by the Weak Structure Theorem of RS

• Basis of several important applications: RS minor testing algorithm, testing for subdivisions.

• New direct proof with explicit constants.

Theorem: (RS '86) For every r, there exists an \mathbf{w} such that if a graph G has tree-width at least \mathbf{w} , then G contains the r \times r grid as a minor.

r-wall is obtained from $2r \times r$ grid by deleting odd vertical edges in the odd rows and even vertical edges in the even rows.

Corollary: For every r, there exists a **w** such that if a graph has tree-width at least **w**, then it contains as a subgraph a subdivision of an r-wall.

Assume G has no K_t minor and does have a big r-wall subdivision subgraph W. How does G-W attach to W?

G has no K_t minor and a subdivision of r-wall (r >>t).

G has no K_t minor and a subdivision of r-wall (r >>t).

1. Many components of G-W have attachments all over W.

G has no K_t minor and a subdivision of r-wall (r >>t).

2. Many disjoint W-paths, each with endpoints in distinct faces.

Saturday, March 23, 13

If we have many such W-paths, \exists an r' × r' grid minor with crosses in the middle row of faces.

$r' \ge t^2 \Rightarrow G$ contains K_t as a minor, contradiction

Conclusion: G-W must attach to W in a way that respects the planarity of W.

Conclusion: G-W must attach to W in a way that respects the planarity of W.

 Perhaps we can delete a bounded set Z of vertices such that:

 Find a subwall W' whose boundary separates "internal" planar subgraph in G-Z?

No: Take a wall and glue a K₅ clique onto each vertex.

• Can't delete bounded number of vertices and find a genuinely planar subwall.

Conclusion: We need "planarity up to ≤ 3 separations".

C a cycle in G: G is C-flat if \exists G₀,...,G_k, Γ such that:

 $1. G = G_0 \cup G_1 \cup \ldots \cup G_k$

2. $C \subseteq G_0$, Γ is a plane graph with $G_0 \subseteq \Gamma$ and $V(G_0) = V(\Gamma)$;

3. C bounds a face of Γ ;

4. $|V(G_i) \cap V(G_0)| \le 3$ and vertices of $V(G_i) \cap V(G_0)$ are pairwise adjacent and co-facial in Γ ;

5. $G_i \cap G_j \subseteq V(G_0)$.

A wall W with boundary cycle C is **flat** in G if there exists a separation (A, B) such that

1. A \cap B \subseteq V(C) and W \subseteq G[B];

2. C' is the cycle on A \cap B given by C, then G[B] is C'-flat.

It is non-trivially flat if the corners of W are contained in A $\ensuremath{\mathsf{N}}$ B

Example of a flat wall

Example of a flat wall

Theorem: For every r, t \ge 1, r even, let R = 49152t²⁴(12t²+ r), let G be a graph and W an R-wall in G. Then either G has a K_t minor (grasped by W) or there exists a set X \subseteq V(G) with |X| \le 12288t²⁴ and an r-subwall W' of W such that V(W') \cap X = Ø and W' is a non-trivial flat wall in G-X.

Robertson Seymour showed a qualitative version in GM 13 (Theorem 9.8).

Giannopoulou and Thilikos showed a version with a linear dependence in r for fixed t.

Why "Weak Structure Theorem" - Applications

• Basis of the RS algorithm for disjoint paths and minor testing.

 Inductive base case of KTW proof of the full Graph Minor Structure Theorem.

• Recent FPT algorithm for testing subdivision containment by Grohe, Kawarabayashi, Marx, W.

• Recent shorter algorithm for finding Graph Minor Decomposition of Grohe, Kawarabayashi, Reed.

3 Main Tools of the Proof:

• Lemma on disjoint W-paths with endpoints pairwise far apart.

- Theorem of RS for the 2-disjoint paths problem.
- Principle: if something happens often enough, then it happens many times in the same way.

1. Disjoint W-paths

H a subgraph of G, then an **H-path** is a path P with ends in V(H), no internal vertex in H, and E(P) \cap E(H) = Ø.

W a wall, $x,y \in V(W)$, let $d_w(x,y)$ be the minimum number of times a curve in the plane from x to y intersects W.

Disjoint W-paths P₁,...,P_k are **t-semi-dispersed** if we can label the ends of P_i as x_i and y_i such that: $d_W(x_i, y_i) \ge t$ and $d_W(y_j, y_i) \ge t$.

We would like an EP-result for t-semi-dispersed paths...

Given W, $t \ge 1$, $x \in V(W)$, let $B_t(x) = \{y: d_W(x,y) \le t\}$

Lemma: Given W and t,k \geq 1, either there exist disjoint Wpaths P₁,...,P_k which are t-semi-dispersed, or there exists a set X, $|X| \leq k-1$ and $Z \subseteq V(W)$, $|Z| \leq 3k-3$, such that every Wpath P with ends x and y, either has d_W(x,y) \leq t, V(P) $\cap X \neq \emptyset$,

or both x and y are contained in $U_{z \in Z} B_t(z)$

Even if no bounded set hits all long paths, two balls cover the ends of every long path.

2. RS theorem for 2-disjoint paths

Theorem (RS): G a graph and s_1, s_2, t_1, t_2 vertices, then there exist disjoint paths P_1, P_2 such that the ends of P_i are s_i and t_i if and only if G is not C-flat where C is the cycle on vertices s_1, s_2, t_1, t_2 .

3. If something happens often enough, it happens many times in the same way

Theorem: Let $t,k \ge [x_1,y_1],...,[x_k,y_k]$ be k intervals on the real line. If $k \ge t^2$, then either there exist t pairwise disjoint intervals, or there exists z contained in t distinct intervals.

Theorem: There exists a polynomial function f such that if $P_1,...,P_k$, $k \ge f(t)$, are pairwise disjoint f(t)-semi-dispersed W-paths on a wall W, then W $\cup P_1 \cup ... \cup P_k$ contains K_t as a minor.

Easier statement: There exists a polynomial functions f satisfying the following. Let $P_1,...,P_k$, $k \ge f(t)$, be pairwise disjoint W-paths with endpoints contained in a set $X \subseteq V(W)$ for a grid W. If the vertices of X are pairwise at distance f(t), then W $\cup P_1 \cup ... \cup P_k$ contains K_t as a minor.

- ∃ at most one endpoint
 within dist t² of the boundary.
 Delete it.
- At least half the line segs have slope m with $0 \le m < \infty$.

- ∃ at most one endpoint
 within dist t² of the boundary.
 Delete it.
- At least half the line segs have slope m with $0 \le m < \infty$.

- ∃ at most one endpoint
 within dist t² of the boundary.
 Delete it.
- At least half the line segs have slope m with $0 \le m < \infty$.

• Apply interval lemma to xaxis intervals of the segments.

• At least half the line segs have slope m with $0 \le m < \infty$.

• Apply interval lemma to xaxis intervals of the segments.

• At least half the line segs have slope m with $0 \le m < \infty$.

• Apply interval lemma to xaxis intervals of the segments.

• If we have t² disjoint intervals, we find as a minor the 2t² grid with crosses in the middle face.

• At least half the line segs have slope m with $0 \le m < \infty$.

• Apply interval lemma to xaxis intervals of the segments.

• If we have t² disjoint intervals, we find as a minor the 2t² grid with crosses in the middle face.

• At least half the line segs have slope m with $0 \le m < \infty$.

• Apply interval lemma to xaxis intervals of the segments.

• If we have t² disjoint intervals, we find as a minor the 2t² grid with crosses in the middle face.

• At least half the line segs have slope m with $0 \le m < \infty$.

• Apply interval lemma to xaxis intervals of the segments.

• If we have t² disjoint intervals, we find as a minor the 2t² grid with crosses in the middle face.

• At least half the line segs have slope m with $0 \le m < \infty$.

• Apply interval lemma to xaxis intervals of the segments.

• If we have t² disjoint intervals, we find as a minor the 2t² grid with crosses in the middle face.

Outline of the proof of the Weak Structure Theorem

1. Apply the semi-dispersed paths lemma to the wall.

2. If there exist $f_1(t)$ -semi-dispersed set of $f_2(t)$ disjoint Wpaths, then we find the K_t minor for appropriately chosen polynomials f_1 and f_2 .

3. Otherwise, there exists a bounded set X and bounded number of balls B_1, \ldots, B_k hitting all long W-paths.

Thus, there exists a wide horizontal strip S of the wall avoiding all the balls B_1, \dots, B_k as well as X.

Let W_i be (r+poly(t))-walls in the center of the strip spaced poly(t) apart.

Apply the 2-paths theorem to each W_i (and the bridges attaching to W_i) along with the four corners.

If some H_i does not have the desired paths, we find a smaller flat subwall inside.

An algorithm

Theorem: There exists an algorithm with **Input**: a graph G on n vertices and m edges, r, t \ge 1, and a R-wall W,R = 50000t²⁴(24t² + r) **Output**: either a K_t minor grasped by W or a set A, $|A| \le 12288t^{24}$ and a nontrivially flat r-subwall of W' with V(W') $\cap A = \emptyset$. **Runtime**: O(t²⁴m + g(n,m)) where g(n,m) is the runtime for the 2disjoint paths algorithm.

The 2 disjoint paths problem:

- RS showed a O(nm) time algorithm.
- Kapadia, Li, Reed announced O(m) but unpublished.