
7

Autonomous Mobile Sensor Placement in Complex Environments

NOVELLA BARTOLINI, TIZIANA CALAMONERI, and STEFANO CIAVARELLA,
Sapienza University of Rome, Italy
THOMAS LA PORTA, Pennsylvania State University, USA
SIMONE SILVESTRI, Missouri University of Science and Technology, USA

In this article, we address the problem of autonomously deploying mobile sensors in an unknown complex
environment. In such a scenario, mobile sensors may encounter obstacles or environmental sources of noise,
so that movement and sensing capabilities can be significantly altered and become anisotropic. Any reduction
of device capabilities cannot be known prior to their actual deployment, nor can it be predicted. We propose a
new algorithm for autonomous sensor movements and positioning, called DOMINO (DeplOyment of MobIle
Networks with Obstacles). Unlike traditional approaches, DOMINO explicitly addresses these issues by
realizing a grid-based deployment throughout the Area of Interest (AoI) and subsequently refining it to cover
the target area more precisely in the regions where devices experience reduced sensing. We demonstrate the
capability of DOMINO to entirely cover the AoI in a finite time. We also give bounds on the number of sensors
necessary to cover an AoI with asperities. Simulations show that DOMINO provides a fast deployment with
precise movements and no oscillations, with moderate energy consumption. Furthermore, DOMINO provides
better performance than previous solutions in all the operative settings.

Categories and Subject Descriptors: C.2.1,C.2.2 [Computer-Communication Networks]: Network Archi-
tecture and Design, Network Protocols

General Terms: Mobile sensor networks, Algorithms and protocols

Additional Key Words and Phrases: Wireless mobile sensor networks, autonomous coordination, communi-
cation and movement obstacles, obstacle sensing, path planning

ACM Reference Format:
Novella Bartolini, Tiziana Calamoneri, Stefano Ciavarella, Thomas La Porta, and Simone Silvestri. 2017.
Autonomous mobile sensor placement in complex environments. ACM Trans. Auton. Adapt. Syst. 12, 2,
Article 7 (May 2017), 28 pages.
DOI: http://dx.doi.org/10.1145/3050439

1. INTRODUCTION

Mobile sensors have enormous potential for monitoring fields that are inaccessible,
unfamiliar, or even hostile. They could be used for environmental monitoring to track
the dispersion of pollutants, gas plumes, or fires. They could also be used for public

This work is partially supported by NATO - North Atlantic Treaty Organization, under the SPS grant G4936
“Hybrid Sensor Network for Emergency Critical Scenarios.” The work of T. Calamoneri is partially supported
by the Italian Ministry of Education and University, PRIN project “AMANDA: Algorithmics for MAssive and
Networked DAta.”
Authors’ addresses: N. Bartolini, S. Ciavarella, and T. Calamoneri, Computer Science Department, Sapienza
University of Rome, Via Salaria 113, 00198 Rome, Italy; emails: {novella, ciavarella, calamo}@di.uniroma1.it;
T. L. Porta, Computer Science and Engineering Department, Pennsylvania State University, 16801, Penn-
sylvania, USA; email: tlp@cse.psu.edu; S. Silvestri, Computer Science Department, Missouri University of
Science and Technology, 500 West 15th Street, Rolla, MO 65409; email: silvestris@mst.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1556-4665/2017/05-ART7 $15.00
DOI: http://dx.doi.org/10.1145/3050439

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

http://dx.doi.org/10.1145/3050439
http://dx.doi.org/10.1145/3050439

7:2 N. Bartolini et al.

safety, for example, to monitor the release of harmful agents as a result of an accident.
In such scenarios, sensors must be deployed from a distance, for example, sent from
a safe location or dropped from an aircraft, and position themselves to provide the
required sensing coverage. A sensor deployment algorithm is necessary to automate
the positioning activity.

One of the major difficulties in turning mobile sensor networks into an everyday
reality is that existing deployment algorithms have been designed to work only in a
flat and smooth Area of Interest (AoI) or they assume detailed knowledge of the field
prior to the deployment. Nevertheless, in real contexts, knowledge of the AoI may not be
sufficiently accurate. Obstacles such as walls and trees may preclude device movement
and sensing, while noise sources could reduce device sensing capabilities, such as in
the case of acoustic sensors in a noisy area or cameras in fog. Therefore, a deployment
algorithm should adapt sensor positions to the terrain and obstacles, and perform a
denser deployment when required.

In this article, we provide a new algorithm, called DOMINO (DeplOyment of MobIle
Networks with Obstacles), that addresses the problem of deploying mobile sensor fields
containing unknown obstacles, terrain asperities, and noise sources. DOMINO is able
to work with heterogeneous networks and successfully deploys sensors in both indoor
and outdoor environments.

In order to evaluate the performance of DOMINO and its ability to work under
the described scenario, we compare it with PDND (Parallel and Distributed Network
Dynamics) [Ma et al. 2008], which is one of the most complete solutions to the deploy-
ment of mobile sensors. PDND is based on a virtual force model. It has excellent perfor-
mance and proven termination. As the original version of PDND assumes smoothness
of the field of interest, we extend it with additional rules to include management of ob-
stacles and position-dependent device anisotropies. Performance comparisons are then
carried out by means of extensive simulations.

The main contributions of this article are the following:

—We propose DOMINO, the first algorithm to make mobile sensors self-deploy in
unknown environments with obstacles and noisy areas.

—We formally prove that DOMINO always terminates in a finite time, and it provides
full coverage when sufficient sensors are available.

—We extend the algorithm PDND to make it work under the same operative scenarios
addressed by DOMINO.

—We perform extensive simulations that show that DOMINO works efficiently even
in complex scenarios with obstacles and asperities; furthermore, we experimentally
compare DOMINO with both the original PDND and its extended variant and we
show that DOMINO significantly outperforms PDND in all key performance metrics.

2. RELATED WORK

One possible approach to the deployment of sensors over a critical field that is inac-
cessible to humans is to use mobile robots preloaded with static sensors. An example
of this approach is proposed in Li et al. [2014], where a number of mobile robots
are scattered randomly in an unknown bounded two-dimensional field of interest,
where terrain and boundary are not known prior to the deployment. Each robot drops
the static sensors at the vertices of a virtual grid and adopts a backtracking algorithm
to guarantee full coverage of the area of interest. A similar approach is proposed in
Ines et al. [2014], who propose the use of a team of robots to relocate the least number
of sensors to guarantee full coverage and avoid physical obstacles in an unknown re-
gion. While these approaches address a similar problem to ours, they rely on the use
of medium-size robots to carry static sensors. Small-size mobile sensors are more ap-
propriate if the environment is hostile. Furthermore, in a critical environment, having

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

Autonomous Mobile Sensor Placement in Complex Environments 7:3

multiple static sensor nodes carried by a single mobile device would create vulnerable
points of failures for a large part of the devices to be deployed.

For this reason, we address the problem of deploying a team of small-size, low-cost
mobile sensors, where each of them moves on its own and communicates with the
others to expand coverage and to regulate positioning conflicts.

Some works on robotics provide approaches to the problem of autonomous coordina-
tion of mobile robots. The work presented in Dieudonné et al. [2008] considers a team
of mobile sensing robots and provides a coordination protocol that makes them assume
a circular formation, starting from any arbitrary positioning. Gilbert et al. [2009] study
the problem of autonomous coordination of mobile robots over a field of interest, even
in the presence of changes in the underlying ad hoc network, and in the team of robots.
The objective is to let robots arrange themselves to form a particular pattern, such as
a uniform distribution along a curve or a bird flock formation. Area sensing coverage
is not the objective of the formation, and for this reason problems such as sensing
anisotropies possibly due to obstacles are not addressed. The algorithm proposed in
Guo et al. [2012] provides a multirobot pattern formation and a boundary coverage
approach that also works in the presence of moving obstacles. The approach is inspired
by biological morphogenesis. It aims at making the autonomous robots form specific
patterns, such as bird flocks, or boundary coverage.

Unlike DOMINO, the approaches in Dieudonné et al. [2008], Gilbert et al. [2009], and
Guo et al. [2012] do not address the problem of area coverage and the related problems
such as sensing and communication heterogeneity and anisotropy in the presence of
obstacles.

A previous solution to mobile sensor deployment is the virtual force approach (VFA).
It models the interactions among sensors as a combination of attractive and repulsive
forces. Drawbacks of VFA include complex tuning of several parameters and sensor
oscillatory behavior. Possible improvements to decrease the oscillations include the
introduction of dissipative forces [Howard et al. 2002; Garetto et al. 2007] or the defini-
tion of arbitrary thresholds as stopping conditions [Chen et al. 2007; Heo and Varshney
2005]. The PDND algorithm [Ma et al. 2008] described in Section 6 is one of the best-
performing VFA-based solutions and has a guaranteed termination. Bartolini et al.
[2014a] consider for the first time the vulnerabilities of deployments based on VFA,
proposing a new protocol that provides total coverage also in the presence of a mali-
cious attacker. However, they assume that the area of deployment is obstacle-free, and
sensing and communications are isotropic.

Other approaches are inspired by fluid models, such as in Pac et al. [2006], or by
gas models, such as in Kerr et al. [2004]. Similar to the VFA, these works suffer from
oscillatory behavior.

Among the works on mobile sensor deployment, many adopt computational geometric
structures such as Voronoi diagrams [Wang et al. 2006] and Delaunay triangulation
[Ma and Yang 2007] in order to identify responsibility regions that are used to guide
sensor movements. These geometric structures can be successfully adopted only under
the assumptions of obstacle-free AoI and a Boolean sensing model. Moreover, Bartolini
et al. [2014b] study the vulnerabilities of the Voronoi-based deployment algorithm
and propose related countermeasures. Although some works consider heterogeneous
sensors [Bartolini et al. 2011b] and nonuniform sensing [Fagiolini et al. 2008; Gusrialdi
et al. 2009], they still assume predictable heterogeneity and anisotropy of the sensing
capabilities and do not address the scenarios considered in this article.

A completely different approach is based on the construction of regular patterns
over the AoI. This technique is motivated by the studies on static sensor deployment
[Bar-Noy et al. 2009; Johnson et al. 2009b]. According to these approaches, mobile
sensors coordinate themselves in order to form a regular pattern such as a hexagonal

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

7:4 N. Bartolini et al.

grid [Bartolini et al. 2011a; Falcon et al. 2011] or a stripe-based pattern [Tan et al.
2009a]. Although these approaches may obtain optimal patterns, depending on the
ratio between rtx and rs, they cannot be applied to the complex scenarios considered in
this article. Indeed, as discussed in Section 3, the presence of obstacles and asperities
makes it difficult to calculate an optimal deployment. Furthermore, regular patterns
would not guarantee full coverage and connectivity due to anisotropic sensing and
communications. Notice that DOMINO falls in this category. Nevertheless, the regular
pattern provided by DOMINO is autonomously adapted and distorted by the mobile
sensors in order to adapt the network configuration to the environment, and additional
sensors are placed in order to achieve full coverage in noisy areas.

Finally, there are miscellaneous other approaches that do not fall into any of the
previous categories, which make use of different techniques such as a hybrid-pattern-
based virtual force approach [Tariq et al. 2010], system theory applied to biological
systems [Martinez et al. 2007], and analytic modeling of animal behavior [Ozturk et al.
2011; Tua et al. 2012]. Nevertheless, such solutions cannot be applied to the realistic
scenarios considered in this article as they also assume isotropic device capabilities,
an obstacle-free environment, and device homogeneity.

3. MOBILE SENSOR DEPLOYMENT IN UNKNOWN AND IRREGULAR FIELDS

Obstacles and terrain asperities are typically present in an AoI and alter device move-
ment and sensing capabilities, causing position-dependent anisotropies. This new sce-
nario brings up the need to solve new problems related to device deployment: sensors
need to adjust their positions in order to cover the terrain even when obstacles are
present, and to perform a denser deployment around areas that are subject to noise
sources; possible errors of the positioning system may occur, which may be worsened
by the presence of terrain asperities and obstacles; furthermore, a path planning algo-
rithm is necessary to let sensors efficiently circumnavigate obstacles and determine the
reachability of a desired position. To the best of our knowledge, DOMINO is the first
algorithm that addresses all of these problems and is able to work in such a realistic
and complex scenario.

We consider N mobile sensors deployed in indoor and outdoor operative settings.
When sensors are deployed in an indoor scenario, we assume they are sent from a safe
region and therefore initially form a connected component. Therefore, any sensor can
determine its relative location inside the AoI by cooperating with neighbor sensors
[Patwari et al. 2005; Bulusu et al. 2000]. Nevertheless, this assumption is not valid
if sensors are to be deployed outdoors, where they can be randomly dropped from an
aircraft. Therefore, in this latter scenario, we consider nodes endowed with low-cost
GPS.1 Notice that DOMINO can work without GPS even in an outdoor scenario, if
sensors execute a preliminary rendezvous technique that can be designed by taking
inspiration from the work of Tan et al. [2009a], to which we refer for details. In this
article, we only consider the cases of indoor deployment and outdoor with GPS.

When working in an obstacle- and noise-free AoI, a sensor si has a sensing radiusr(i)
s

and communication radius r(i)
tx , with i = 1, . . . , N. By contrast, when deployed in an

AoI containing obstacles and noise sources, the sensing capabilities can be reduced
and become anisotropic. We assume that every sensor can detect obstacles in its sens-
ing range, for example, by using ultrasonic waves [Ohya et al. 1996]. By using this
technique, devices are able to estimate their sensing coverage extension with a certain

1Low-cost GPSs currently available provide accuracy in the orders of a few decimeters [Beran et al. 2007]
and have a cost of around $ 200 per unit [Memsic datasheet 2017].

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

Autonomous Mobile Sensor Placement in Complex Environments 7:5

precision. Furthermore, sensing devices can be heterogeneous. In such a case, we define
rMax

s = maxi=1,...N r(i)
s and rmin

tx = mini=1,...N r(i)
tx .

We anticipate that DOMINO positions at least one sensor in each accessible tile of
a regular square grid drawn over the AoI. We consider a grid where each squared tile
has side

√
2 · rMax

s . This setting ensures that the only sensors that can cover an entire
tile are the ones working with maximum sensing range. The algorithm works indepen-
dently of the grid size. Nevertheless, a smaller grid would possibly create unnecessary
coverage redundancy. By contrast, as we detail in Section 4, when one sensor alone
is not sufficient to entirely cover its responsibility region, DOMINO positions other
additional sensors where necessary.

We assume that noise and communication obstacles do not preclude the communica-
tion between any two sensors positioned in adjacent tiles. This assumption guarantees
connectivity of the final deployment provided that the AoI is not partitioned in disjoint
portions. In order to meet this assumption, the transmission range of a sensor should
never be reduced below the value of

√
10 · rMax

s , which is the maximum distance between
any two positions in the rectangular area formed by two adjacent tiles (corresponding
to the diagonal of such a rectangular area with sides

√
2 · rMax

s and 2 · √
2 · rMax

s).
Notice that this assumption can be removed so as to consider both the case of power

attenuation and the case of obstacles that shield communications, by allowing the use
of auxiliary sensors for connectivity purposes around obstacles or through asperities
when needed according to a technique described in the the work of Tan et al. [2009a].

Finally, we assume that the communication protocol implementing DOMINO is based
on an underlying communication protocol stack that ensures error-free communications
by means of retransmissions.

4. THE DOMINO ALGORITHM

4.1. Target Deployment of DOMINO

When DOMINO is executed over a smooth and flat AoI and with homogeneous sensors,
the target deployment is a squared grid of sensors where each tile is assigned to one
sensor only. In such a case, it is possible to size the squared grid so that each sensor
completely covers its tile and is able to communicate with the four adjacent neighbor
sensors in the grid.

Nevertheless, if DOMINO is performed in a more realistic environment, it can be
impossible to obtain such a regular grid deployment because some grid positions may
be unreachable and a single sensor may be insufficient to cover the whole tile due to
obstacles and asperities.

We hereby use the term skeleton grid to refer to the regular squared grid that
DOMINO would create in the case of a flat and smooth AoI. We assume that the
coordinates of the skeleton grid points are known to all sensors being deployed. We
underline that knowledge of the skeleton grid coordinates does not require knowledge
of obstacles, asperities, and in general the reachability of these locations in the AoI.
Indeed, the skeleton grid is used to guide the movements of the sensors in the area,
and the actual final deployment may be substantially different from the tile centers of
the skeleton grid.

The size of the grid is not a primary issue for the definition of the algorithm, but it
can affect the coverage redundancy and the number of required sensors. We propose to
set the length of the grid side to lMax

s = √
2rMax

s . The wiggle room technique [Johnson
et al. 2009b] can be used to accommodate small errors in sensor positioning by slightly
reducing the grid side. Notice that by setting this side length, a single sensor may not
always be sufficient to cover the entire tile. In fact, in the regions in which the AoI is
not flat and smooth, and sensors have reduced sensing capabilities or sensing radius

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

7:6 N. Bartolini et al.

Fig. 1. Example of AoI partitioning (a), and example of refined deployment with adjunct sensors (b).

lower than the Maximum value rMax
s , the tiles of the skeleton grid will require more

than one sensor to be covered.
A partitioning obstacle is an obstacle that partitions a grid tile in several discon-

nected portions, such that a sensor must traverse at least one other tile in order to
move from one side of the obstacle to the other. DOMINO partitions the AoI into re-
sponsibility regions. A responsibility region is the area of a tile that is delimited by its
borders and by any partitioning obstacle crossing the tile. Notice that a tile that does
not contain any partitioning obstacle constitutes a single responsibility region.

The target deployment of DOMINO consists of having at least one sensor, hereafter
called the root sensor, in any responsibility region. All sensors lying in the responsibility
region of a root sensor act as its slaves. If a root sensor does not entirely cover its
responsibility region, it turns some of its slaves into adjunct sensors and deploys them in
key positions in the same tile, according to a recursive regridding mechanism. The grid
formed by root sensors is called the top-level grid. Two responsibility regions belonging
to two different tiles of the top-level grid are called adjacent whenever they have a
common boundary portion that can be traversed by a moving sensor. Such traversable
boundary portions are called corridors. DOMINO requires every root sensor to be in
communication with all its adjunct sensors and with the root sensors belonging to
adjacent responsibility regions (adjacent root sensors).

An example of AoI partitioned into responsibility regions is shown in Figure 1(a),
where the AoI is tessellated into six squared tiles and eight responsibility regions.
The responsibility regions II, III, and IV belong to the same squared tile and are
disconnected by two partitioning obstacles. The responsibility region III is adjacent to
regions I, V, and VII, but it is not adjacent to regions II and IV. Similarly, region V is
adjacent to regions II, III, IV, and VIII. The root sensors of the responsibility regions
numbered I, V, VII, and VIII do not cover their regions completely, because of the
presence of sensing obstacles; therefore, DOMINO places adjunct sensors to complete
the coverage of their regions, as shown in Figure 1(b).

4.2. Outline of the Algorithm DOMINO

In this paragraph, we outline the basic actions provided by the algorithm DOMINO. We
will give a more detailed description of each action in Section 4.3, where we address
every potential problem that each sensor may have to face when performing each
algorithm action, such as how to solve positioning conflict among several sensors or
where to go when a desired location is inaccessible due to the presence of obstacles.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

Autonomous Mobile Sensor Placement in Complex Environments 7:7

The algorithm actions are executed by each sensor in a distributed and interleaved
manner. No synchronization among sensors is necessary.

Every sensor that has not yet been involved in other algorithm activities by other
sensors tries to position itself (Snap) in the closest skeleton grid point and starts the
grid formation from there. After a successful snap action, the sensor becomes the root of
its own responsibility region. In order to extend the grid formation, a root sensor checks
whether its adjacent responsibility regions are already under the control of other root
sensors. It then sends a slave to snap into any ungoverned region. In general, this
results in the creation of several aligned grid portions, which eventually grow and
merge into a unique grid. At the end of a Snap action, new root sensors are deployed to
cover new responsibility regions; hence, global coverage is increased.

If a root sensor determines that its responsibility region is not completely covered,
it runs a local grid refinement (Grid Refinement activity) in order to place some of its
slaves in key positions for increasing coverage within its tile. After such an activity, the
involved slaves take the role of adjunct sensors. Adjunct sensors that become redundant
after the placement of other adjunct sensors are released and made available again
for other purposes. At the end of the Grid Refinement activity, the coverage of a tile is
increased.

If a root needing to complete the Snap or the Grid Refinement activities has no slaves
available, it invites slaves from other regions by means of a Pull action. Such an action
is auxiliary to the execution of either a grid refinement or a snap action and is never
executed alone. For this reason, at the end of a Pull action, an increase of coverage is
always observed (although the actual increase in coverage may be due to the placement
of a sensor other than the one that received the invitation).

Some slaves in a given responsibility region can be redundant because their region is
completely covered and all adjacent root sensors have been positioned. In such a case,
the root sensor pushes its redundant slaves toward regions with lower density, if any,
according to the so-called Push activity. At the end of a Push activity, the slave density
is uniformed among adjacent tiles.

All sensor movements provided by DOMINO follow the path planning algorithm
called Area Limited Bug 2 (AL-Bug2) described in Section 4.4.

4.3. The DOMINO Activities in Detail

In this section, we describe in detail the activities of DOMINO. Figure 2 shows a
flowchart of these activities.2

4.3.1. Snap. The Snap action is performed by sensors in order to expand the top-
level grid. Each sensor that has not yet been involved in other algorithm activities
positions itself in the closest point of the skeleton grid and becomes a root sensor of the
corresponding responsibility region. In particular, when performing a snap activity,
sensor t tries to reach its target skeleton grid position. If such a position cannot be
reached due to the presence of obstacles, t performs an exploration of the part of the
obstacle it can reach without exiting the tile, and then it stops in the point of the
tile at minimum distance from the tile center. If there are multiple positions at such
a minimum distance, an additional condition, such as being the northern position or
any other arbitrarily chosen orientation, is used to ensure the uniqueness of the snap
position. This is necessary because two or more sensors may try to snap in the same
region R, causing a positioning conflict that can be solved only if the snap position is
unique, according to a timestamp criterion.

2The figure focuses on the actions performed by a sensor becoming the root of a responsibility region. Actions
performed by slave and adjunct sensors are omitted for ease of representation.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

7:8 N. Bartolini et al.

Fig. 2. Flow chart of DOMINO activities.

Let t be the sensor that won the positioning conflict. Before acting as the root, sensor
t needs to determine the border of its responsibility region. Notice that for this purpose,
DOMINO requires that t explores every unknown part of the border of its responsibility
region. After this exploration, t assumes its snap position and, from there, it first
determines the presence of coverage holes and then broadcasts a message by which it
declares itself as the root of the region. This message also contains the coordinates of
its position and of the border of its responsibility region. The sensors located within the
region reply to this message with their position and switch their status to slave of the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

Autonomous Mobile Sensor Placement in Complex Environments 7:9

Fig. 3. An example of the Snap activity.

newcomer root sensor. The adjacent root sensors also reply to this message to notify t
of their presence. The root sensor t tries to expand the deployment by sending slaves in
ungoverned adjacent regions to make them snap. When t determines the presence of
an adjacent region R without any root sensor governing it and has available slaves, it
sends one of its slaves, s, to snap in the ungoverned adjacent region, with the purpose
to make it become its root. If there are ungoverned adjacent regions but there are
no slaves available, t resorts to the pull activity to invite new slaves, as described
in Section 4.3.4. Notice that the presence of obstacles requires the root to send an
available slave, s, for each corridor detected on the border of the responsibility region
of t. Consider the scenario illustrated in Figure 3. Since t has complete knowledge
only of its tile, it is not able to determine whether two or more corridors lead to
disconnected responsibility regions or to a single one. Potential positioning conflicts
are solved considering timestamps.

At the end of this activity, the former slave sensor s, now a root, has complete
knowledge of the number and positions of its slaves, the identity and position of its
adjacent sensors, the border of its responsibility region, and the corridors connecting
to its adjacent responsibility regions. Furthermore, it is in communication with node t,
which is the root sensor that sent s to snap.

As a consequence of the snap activity, each sensor becomes either a root or a slave.
This activity results in the creation of several connected components forming separate
grid portions that expand through the AoI. In the hypothesis that enough sensors are
available to cover the AoI entirely, and that all the points that need to be covered in
the AoI are reachable by the moving sensors, the subsequent activities provided by
DOMINO ensure that these grid portions eventually expand enough to come close to
each other and merge in a single connected grid.

4.3.2. Grid Refinement. If a root sensor t of a responsibility region R detects coverage
holes inside R, it performs the Grid Refinement activity. Sensor t refines the grid by
placing additional adjunct sensors in new locations within R corresponding to the node
positions of a quad-tree structure as follows.

The root sensor t virtually divides the squared tile containing the region R into four
squared subregions and evaluates the coverage of the subregions that intersect R. If a
coverage hole is detected in a subregion, an adjunct sensor (either a slave of t or a sensor
invited by t through the Pull activity) is positioned in the center of the subregion (or in
the closest position to the center and to the north direction, or to any other arbitrarily
chosen direction if the center is not reachable).

Every adjunct sensor recursively analyzes the coverage of its subregion and, if nec-
essary, repeats the process by dividing it into the other four subregions and positioning
additional adjunct sensors.

The recursive grid refinement of the subregions is performed in a breadth-first
search fashion, that is, level by level, and sequentially to avoid placing unnecessary

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

7:10 N. Bartolini et al.

sensors if an adjunct sensor of a subregion is able to also cover other adjacent
subregions.

The process terminates as soon as either the considered responsibility region is
completely covered or all the available sensors have been definitively positioned. Ad-
ditionally, in order to avoid the creation of a too-deep quad-tree, we limit the level
of regridding steps to a Maximum fixed level kMax at the expense of a small loss in
coverage.3

Some adjunct sensors, which have been placed at a given instant to fill a coverage
hole, may become unnecessary at a later time, due to the subsequent placement of
other additional adjunct sensors in the tile. In this situation, the unnecessary adjunct
sensors alert the root sensor. The root sensor t selects, among the redundant adjunct
sensors, the ones that can be released from the quad-tree and can be made slaves again.
This procedure, corresponding to the “release redundant adjuncts” block of Figure 2,
ensures that no adjunct sensor in R is redundant at the end of the grid refinement
activity performed by t.

In order to avoid possible stale situations that may occur as a consequence of the
regridding operations, we provide the following cascaded release process.

If an adjunct sensor u needs other adjunct sensors in its subtile, it notifies the root
sensor t of this requirement. As it is likely that the placement of adjunct sensors makes
u and some of its ancestors in the quad-tree unnecessary for coverage, the placement
of the adjunct sensors in the subtile of u occurs according to the following process:
the adjunct u moves itself to one of the candidate positions for new adjunct sensors in
its subtile. This movement is notified to the lowest ancestor of u, which will release
itself and take the previous position of sensor u only if it is necessary for coverage. This
process could recursively proceed along the path from u to the root t. If while performing
such a cascaded release process the root is notified that some released ancestor of u
is still necessary for coverage, it replaces it by selecting a new slave if available or
issuing a pull action if necessary. Notice that the root of a responsibility region is never
released even in the case of redundancy.

The Snap and Grid Refinement activities govern the expansion of the top-level grid
and its refinement, respectively. We introduce a timeout �, before which no regridding
is allowed. � needs to be tuned according to the network coverage goals: before the
expiration of the timeout, a quicker expansion takes priority over grid refinement, and
vice versa after its expiration.

4.3.3. Push. Once it has completed the coverage of its responsibility region, a root
sensor t may still have some available slave sensors that can be useful somewhere else
in the AoI. In this case, it proactively pushes the extra slaves toward adjacent regions
with fewer slaves. Before performing a push activity, a root sensor exchanges a message
with the adjacent root sensors concerning the respective current number of slaves.

Among the adjacent regions, t selects the destination region of the push action as
the one that has the lowest number of slaves; among the slaves that can be pushed, t
selects the one that is closest to the destination region.

In order to avoid endless cyclic movements of slaves, the push activity from the region
of the root sensor t to the region of the root sensors s is allowed only if the following
moving condition is verified:

{S(t) > (S(s) + 1)} ∨ {S(t) = (S(s) + 1) ∧ id(t) > id(s)}, (1)

3Notice that this limit is needed to have a theoretically guaranteed termination and also to account for the
inherent size of devices, which makes it impossible to have an infinite number of regridding steps. A value
of kMax=2 was sufficient in all our experiments to have both termination and complete coverage.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

Autonomous Mobile Sensor Placement in Complex Environments 7:11

where S(·) is the number of slaves of the sensor in argument and id(·) is the unique
identity code of the sensor radio device, namely, its MAC address, or any other serial
number that can be used to uniquely identify each sensor device. The moving condition
is verified if t has at least two more slave sensors than s, or if t has exactly one more
slave sensor and its id is greater than the id of s. This condition prevents ping-pong
effects that may occur when the difference in the number of slaves is only unitary. The
only slave movement allowed in such a case is in the direction of decreasing id.

4.3.4. Pull. The Pull activity provides a reactive method to attract sensors where
needed. Notice that this is an auxiliary activity and is never executed alone. When
a root sensor s needs new slaves to expand the grid through a Snap or to refine the
deployment through a Grid Refinement, it issues a Pull request for a given number
k ≥ 1 of new slave sensors. The sensor s sends an invitation message, which is flooded
from one responsibility region to the next adjacent one. This message flooding has
a limited horizon h, initially set to 1, and increases sequentially until the necessary
slaves are found.

If a root sensor t having some available slaves receives this message, it answers to the
invitation by sending a slave proposal message to s. The slave proposal message con-
tains information regarding the number of slaves available in t’s region. The proposed
slaves are then considered as reserved by t until they are either accepted or refused
by s. Slaves are never proposed to multiple root sensors performing a pull action. If
the proposals received by s contain at least k sensors, s sends an acknowledgment
message to the roots from which it wants the k slaves to come. All other root sensors
having reserved slaves for s wait for an acknowledgment from s until the expiration of
a timeout; after the expiration of this timeout, they cancel the slave reservation.

If, on the contrary, the proposals received by s contain fewer than k sensors, s ac-
knowledges all the proposals, but it continues flooding the invitation with an increased
horizon h + 1 in order to find the sensors that are still necessary. This mechanism
continues by increasing h several times until s finds the k needed sensors or h reaches
the maximum network diameter.

Notice that the flooding of invitations is performed only through adjacent root sen-
sors. As a result, if the root sensor s accepts a slave from a root sensor t, there is a
traversable path from the responsibility region of t to the one of s, and vice versa.

It must be noted that some slave sensors may be engaged in other activities and may
not be immediately available for a pull action, but they may become available at a later
time. For example, an adjunct sensor being in an intermediate phase of regridding of a
given responsibility region may not be available at the moment of the pull invitation,
but may become available after a release. Additionally, a slave sensor may be tem-
porarily reserved for another pull action if its root has already sent a slave proposal
message but has not received an acknowledgment by the corresponding puller sensor.
In both these cases, the root sensor that is receiving the new pull invitation stores
such an invitation message in a dedicated queue. At the end of the Grid Refinement, if
an adjunct sensor is released or a reserved slave sensor becomes newly available, and
there are pull requests in the invitation queue, the root notifies the inviter of the new
slave availability.

Furthermore, notice that a pull invitation may be launched while there is no full
network connectivity yet. In this case, the message may only reach root sensors at the
frontier of the connected component containing the puller root. These root sensors may
be unable to propagate the invitation message because they do not have any adjacent
root sensors to which they could forward the message. If such a premature pull activity
occurs, the frontier root sensors store the invitation message in a forward queue and
forward it as soon as they have new adjacent roots as potential recipients. At the same

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

7:12 N. Bartolini et al.

Fig. 4. Example of motion planning according to Bug2 (a) and AL-Bug2 (b).

time, they notify the inviter sensor so that it may reissue the pull invitation if still
necessary. While root sensors execute a pull invitation, they must also store invitation
messages received by other roots. This is necessary because a pulled sensor may reach
the responsibility region of a puller root later than required, that is, when the vacant
position has already been covered by another sensor.4

The described pull activity ensures that, if enough sensors are available to entirely
cover the AoI at the required accuracy, each sensor performing the Pull activity will
eventually receive all the sensors it needs.

4.4. Path Planning Under DOMINO: AL-Bug2

Mobile sensors, like any mobile robot, need a path planning algorithm to surround
obstacles when heading to a destination. We designed the algorithm AL-Bug2 (Area
Limited Bug2), a modified version of the Bug2 algorithm [Lumelsky and Stepanov
1987], which takes account of the specific needs of DOMINO.

According to Bug2, the robot heads toward the target along the segment connecting
the two points. When the robot encounters an obstacle (hitpoint), it goes along the
border of the obstacle (following a preferential direction, e.g., right-hand) until it can
continue on its previous path from a point that is closer to the target than the hitpoint.
In order to allow the robot to exit from maze-shaped obstacles, each time the robot
reaches the same hitpoint, it changes the preferential direction with respect to the
previous one (from right- to left-hand or the opposite).

While the original Bug2 is meant to guide the movement of a single robot from a
source to a precise destination point, DOMINO requires the mobile sensors to move
either to (1) a specific point (during a snap) or (2) a generic point of a responsibility
region (during a pull or a push activity). Moreover, when the sensor has a specific desti-
nation point and it is obstructed by an obstacle, it may decide to change its destination
depending on the shape of the responsibility region.

The algorithm Bug2 is designed to let robots circumnavigate obstacles until they
reach a clear path to their destination or they realize that the destination is unreach-
able. For instance, consider Figure 4(a), where a slave sensor is sent to snap to an
adjacent tile by the root sensor t. The target position is the center of the tile, but it
is obstructed by the presence of an obstacle. Following the basic Bug2 algorithm, the
sensor would traverse many tiles before being able to conclude that the desired po-
sition is unreachable and that it needs to stop in the closest point. This long path is
necessary for Bug2 as it assumes that there is only one sensor and this sensor has to

4This may occur if two root sensors a and b compete for the same unique slave z. Let us assume that a wins
the competition and z starts moving toward a. Assume also that in the meantime, the hole for which a issued
the pull is filled by a third root sensor c. In the time that z reaches a, the pull action of b may terminate,
having reached the maximum horizon, after contacting all possible roots. In order to let the slave z reach the
region of the root sensor b, a must store the invitation message received by b and notify b of the availability
of z as soon as its need of slaves is fulfilled by the third root sensor c.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

Autonomous Mobile Sensor Placement in Complex Environments 7:13

reach a precise destination. Bug 2 moves the sensor on the opposite side of the obstacle
to determine if the desired destination is reachable surrounding the obstacle.

Nevertheless, DOMINO does not require a sensor to completely circumnavigate large
obstacles. When an obstacle is encountered during a snap action, the sensor determines
the reachability of its destination within the target tile by moving along the obstacle
until it reaches the tile border. If the destination is unreachable without exiting the tile,
it means that the obstacle cuts the tile in two or more responsibility regions. Hence,
once the sensor determines the shape of its responsibility region, it finds a new snap
position within it and the destination point of the path planning algorithm is updated.

For this reason, in the same scenario of Figure 4(a), the new proposed path planning
algorithm AL-Bug2 in (b) prevents sensors from uselessly circumnavigating large ob-
stacles in the wrong direction, by making it more adherent to DOMINO requirements.

Furthermore, we recall that DOMINO may require a sensor to move to any point of
an adjacent responsibility region. This may occur during a push or a pull action. In
this case, the sensor is sent to the middle point of the corridor between the two tiles
and stops as soon as it passes the border.

By contrast, when a sensor is pulled from a source tile to a destination tile, the two
tiles may not be adjacent. Nevertheless, we recall that the flooding of pull invitations
is performed only through adjacent tiles, so the pulled sensor can be informed of the
entire list of tiles it has to traverse by analyzing the route followed by the received
invitation message. Therefore, the movement can be decomposed in a list of shorter
movements between adjacent tiles. Once the pulled sensor reaches a new tile, it updates
the destination considering the next tile on the list.

In order to regulate the movement between adjacent responsibility regions, AL-Bug2
works as follows: when a sensor reaches the destination tile, if (1) the destination point
is any point in the new tile, it simply stops there; instead, if (2) the destination point is
a specific point in the new tile, the sensor considers its borders as new virtual obstacles
and heads toward the destination treating real and virtual obstacles alike.

Let us consider a sensor s moving from region R1 to an adjacent region R2. The sensor
s initially heads toward the corridor connecting the two regions, following the Bug2
algorithm. During this movement, s considers all the borders of R1, except the corridor
to R2, as virtual obstacles. As a result, s can leave R1 only through the corridor. When
s enters R2, it considers all the borders of R2 as virtual obstacles and heads toward the
target using Bug2, updating its destination when necessary.

5. ALGORITHM PROPERTIES

5.1. Bounds on the Number of Necessary Sensors

Let NDOMINO be the number of sensors necessary to cover the AoI. NDOMINO can be computed
as the sum of several contributions: NDOMINO = Nflat + Nasp + Nobs, where Nflat is the
number of sensors needed to construct the skeleton grid, whereas Nasp and Nobs are the
sensors placed according to the quad-tree refinement. Nasp is the number of additional
sensors required to completely cover asperities or to fill the coverage gaps due to
heterogeneity of sensing devices and Nobs is the number of additional sensors required
to cover obstacles.

We give an upper bound NUB
DOMINO on NDOMINO by considering separate upper bounds on

the number of sensors needed to create the skeleton grid (NUB
flat), cover obstacles (NUB

obs),
and refine the grid (NUB

asp).
Since Nobs highly depends on the size, mutual position, and orientation of obstacles

over the AoI, it is impossible to give a general upper bound NUB
obs.

In the following, we give some bounds on Nflat and Nasp. In the discussion, we assume
that sensors have homogeneous sensing capabilities with sensing radius rs. The result

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

7:14 N. Bartolini et al.

can be trivially extended to the case of heterogeneous sensors by considering each of
them equal to the one with lowest capabilities.

5.1.1. Bound on Nflat. In order to compute Nflat, we consider a flat and smooth AoI. In
this case, every root sensor lies in the center of a tile of the skeleton grid. The number
of sensors composing the skeleton grid depends on the position and orientation of such
a grid, and there is a boundary effect that must be considered.

In order to calculate an upper bound NUB
flat on Nflat, we consider an AoI extended

with a surrounding strip of width
√

2 · ls, which is the diameter of a tile. We refer to
such an extended AoI as AoI+√

2ls . We use the notation ||AoI|| to denote the size of the
area of the region AoI. We use a similar notation ||AoI+√

2ls || for the area of the region
AoI+√

2ls . We have

�||AoI||/ls2� ≤ Nflat ≤ NUB
flat = 	||AoI+√

2ls ||/ls2
.
5.1.2. Bound on Nasp. We assume that the asperities can be modeled as n uniformly

noisy areas: Z1, . . . , Zn. Each asperity Zi is characterized by a withering factor αi,
0 < αi < 1, which represents the reduction in the sensing range due to the asperity Zi.
In particular, the minimum sensing radius inside Zi is αi · rs.

Let klasti be the number of recursive regridding steps that are necessary for a root
sensor s to cover the intersection between the noisy area Zi and its responsibility
region. Sensor s recursively regrids its region until adjunct sensors are placed at a
sufficient density to achieve full coverage. At each iteration of the regridding process,
the diameter of the subtiles is half of the one of the previous step. As a result, at the jth
iteration, the tile semidiagonal is given by rs/2 j . The regridding stops at the iteration
klasti such that rs/2klasti ≤ αirs. Easy calculations lead to klasti = 	−log2αi
. Coverage of
the tile will be completed when the last level of adjunct sensors is deployed (at the klasti -
th step of regridding). It must be noted that in the case described previously, where an
asperity is the only reason for a root sensor to be incapable of covering its responsibility
region, the last layer of regridding is sufficient to guarantee complete coverage. When
such a layer is deployed, all the adjunct sensors placed at the previous regridding steps
are redundant and are therefore released and made available for other activities. As a
result, the number of adjunct sensors that remain in the tile after the release activity is
4klasti and a tile inside an asperity Zi is covered by means of a squared grid deployment
with side lZi = √

2 rs

2klasti +1
.

The number of root sensors whose tile intersects Zi can be upper bounded by using
the method of the extended area we used for bounding Nflat. Each of these root sensors
places at most 4klasti additional sensors in its tile. As a result, the number of additional
adjunct sensors Nasp(Zi) for the asperity Zi is given by

Nasp(Zi) ≤ 4klasti

⎡
⎢⎢⎢

||Z+√
2lZi

i ||
ls2

⎤
⎥⎥⎥

= NUB
asp(Zi) = 4klasti Ti,

where Ti is the maximum number of responsibility regions intersecting the noisy area
Zi.

An upper bound NUB
asp on Nasp is given by the sum of the contributions of all n noisy

areas:

Nasp =
n∑

i=1

Nasp(Zi) ≤
n∑

i=1

NUB
asp(Zi) = NUB

asp.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

Autonomous Mobile Sensor Placement in Complex Environments 7:15

5.2. Correctness and Termination of DOMINO

THEOREM 5.1 (TERMINATION). The algorithm DOMINO terminates in a finite time.

PROOF. Let L = {�1, �2, . . . , �|L|} be the set of responsibility regions. We denote the
status of the network with an (|L| + 1)-dimensional vector s =< γ, n1, n2, . . . , n|L| >,
where:

—γ denotes the uncovered portion of the AoI. Here coverage is calculated by considering
the only coverage realized by root or adjunct sensors within their region (we do not
consider as covered the portions of a tile that are covered by sensors located in
adjacent tiles or by slaves).

—ni represents the number of slaves in the ith responsibility region.

The execution of every algorithm activity leads to a change in the network status as
follows:

—The Snap of a new root sensor in a responsibility region leads to a decrease of γ . In-
deed, even when multiple Snap commands are issued toward the same responsibility
region, a new region is covered, no matter which of the competing sensors actually
becomes root.

—The Grid Refinement activity causes a decrease of γ in a finite time, after a limited
number (up to kMax for the ith responsibility region) of recursive steps of regridding
and a final release of redundant adjunct sensors.

—The Pull activity is always executed in a joint manner with a Snap or a Grid Refine-
ment; therefore, it also terminates and results in a decrease of γ . As the Pull activity
involves the forwarding of an invitation message through the network, its execution
time is limited by the network size and by the depth of possible regridding, which
may cause a delay in the release of the necessary sensor. In any of the previous cases,
the status change occurs after a finite time.

—The Push activity is the only activity that leads to a change in the network status
without an immediate decrease of γ . A push, in fact, implies a change in a pair of
elements (ni, nj) of the status vector, as there is a movement of slaves from the ith to
the jth responsibility region. Such a state change occurs in a finite time.

All the other algorithm activities (including intermediate forwarding of Pull mes-
sages and border/obstacle exploration) are only a complement to the execution of one
of the activities listed earlier.

We define the function f : R × N
|L| → R × N

2 as follows:

f (s) =
⎛
⎝γ,

|L|∑
i=1

n2
i ,

|L|∑
i=1

ni · id(�i)

⎞
⎠ .

We denote with � the lexicographic order on the elements of the codomain of the
function f (·) defined previously.

We now show that the function f (·) is monotonically decreasing at every change in
the status of the network.

With the exception of the Push, every action (no matter if accompanied by a corre-
sponding Pull) leads to an increment in coverage of the AoI, implying a decrease in γ ,
which also means a decrease in the value of the function f (·).

Let us consider the status change caused by a Push action. Let us consider a generic
state change from s to s′ that occurs when the root sensor sx pushes a slave to the
region of root sensor sy. We have that ni = n′

i ∀i �= x, y, n′
x = nx − 1, and n′

y = ny + 1.
As the transfer of the slave has been performed according to the Moving Condition

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

7:16 N. Bartolini et al.

(Equation (1)), either nx > ny + 1 or (nx = ny + 1) ∧ (id(x) > id(y)). In the first case,
nx > ny + 1 implies that

∑|L|
i=1 n2

i >
∑|L|

i=1 n′2
i . In the second case, since nx = ny + 1 and

id(x) > id(y), we have
∑|L|

i=1 n2
i = ∑|L|

i=1 n′2
i but

∑|L|
i=1 ni · id(�i) >

∑|L|
i=1 id(�i)n′

i.
Therefore, in both cases, f (s) � f (s′).
Notice that f (·) decreases in the first component γ only a finite number of times

as a consequence of Snap actions (whose number is bounded above by |L|) or of Grid
Refinement actions (whose number is bounded above by |L| · kMax) or of any other
action composition that involves either a Snap or a regridding action. Furthermore, f
decreases in the second and third components of discrete quantities (integer values) at
any push action. As all these components are bounded below by 0 (f is lower bounded
by (0, 0, 0)), the number of state changes is finite, and therefore DOMINO terminates
in a finite time.

We say that the AoI is connected if given any two points of the area that are not
obstructed by obstacles, there is a traversable path connecting the two points.

THEOREM 5.2 (COVERAGE). If at least NUB
DOMINO sensors are available, and the AoI is

connected, DOMINO performs a complete coverage of the AoI.

PROOF. Let us consider an AoI with several obstacles and noisy zones.
The hypothesis of having NUB

DOMINO sensors implies that the number of available sensors
is at least equal to the number of root sensors necessary to govern each responsibility
region, taking account of the obstacles over the AoI, plus the number of adjunct sensors
necessary to cover the noisy zones at the necessary depth level.5

In order to prove that DOMINO is able to properly use such sensors, providing a
complete coverage, recall that if a root sensor s detects a coverage hole in its own
responsibility region or discovers a vacant root position in an adjacent tile, it either
uses its available slaves to fill the hole or generates a Pull action, with the purpose to
use a pulled sensor either for a new Grid Refinement or for a Snap action, respectively.

We need to prove that if no other root sensors govern the coverage of the mentioned
hole, the forwarding of the Pull message sent by s eventually reaches a root sensor that
has an available slave. This slave will move toward s and will be used by s either for
a Snap or for a regrid action according to the coverage needs, thus filling the detected
coverage hole.

We address the proof by splitting the previous assertion into two parts: Part (a)
concerning the existence of a slave sensor to be pulled, and Part (b) concerning the
reachability of such a sensor by means of a Pull invitation.

Part (a). Existence of a sensor that can eventually cover the hole: as long as there is a
coverage hole, by hypothesis, there is a sensor in some region of the AoI in one of the
following conditions: (a.1) it is an undeployed slave; (a.2) it is a pulled sensor, which
will eventually become an unnecessary slave; or (a.3) it is an adjunct sensor, which will
eventually be released.

In case (a.1), the Pull request will eventually reach this sensor, unless it is reserved
by another root for a Pull or a Grid Refinement activity, leading to either case (a.2) or
(a.3).

In case (a.2), even if the only available slaves in the network were already reserved
due to Pull actions by other sensors, either these actions lead to an increase in coverage,
freeing other pulled or adjunct sensors, or a pulled sensor moves toward its inviter root
and eventually becomes an unnecessary slave. As the inviter root must have stored any

5We are implicitly assuming that coverage can be obtained in each responsibility region by means of a
number of regridding actions that is lower than or equal to the maximum level kMax allowed by DOMINO to
ensure termination.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

Autonomous Mobile Sensor Placement in Complex Environments 7:17

Pull message received during its own Pull activity in its invitation queue, it notifies s
of the new slave availability, so s can receive it if it is still necessary.

In case (a.3), thanks to the Cascaded Release mechanism, the quad-tree refinement
activity does not create stale situations, as adjunct sensors at a given level k are
always released in favor of the placement of other adjunct sensors at level k + i with
i > 0 and new sensors for level k are called back only if necessary for coverage. Once the
regridding has led to the completion of the last level of refinement, all the Pull activities
issued for the previous levels are interrupted and the received Pull invitations are
honored if necessary as discussed for case (a.2).

Part (b). Reachability of t through a Pull action: Let t be the slave sensor that root
sensor s needs to complete coverage, whose existence is proved in Part (a) of this proof.
We now prove that, under the assumption that the AoI is connected, t is reachable by s
through a Pull invitation. In case (a.1), t is an undeployed slave. Its root is eventually
reached by a request from s thanks to the propagation mechanism of the Pull action
and t is sent to s. If it is a sensor in situation (a.2) or (a.3), its root z is also reached
by the Pull invitation and it stores the invitation message. In both cases, t will become
available at a later time. At that time, z will notify s of the new sensor availability and
subsequently will send t to s, which will use it to fill the coverage hole with either a
Regrid or a Snap action.

We conclude the proof by observing that, while the root sensor s is still performing
the Pull action to obtain the required slave, the coverage hole may be filled by newly
arrived slaves (as a consequence of Push or Pull activities involving other root sensors).
In such a case, the pulled sensor reaches s and becomes its slave, available to fulfill Pull
requests received in the meantime or to participate in future algorithm activities.

6. A VIRTUAL FORCE APPROACH FOR UNKNOWN FIELDS

As discussed in Section 3, there are no prior works dealing with the applicative scenario
we consider in this article. For a thorough review of existing approaches, we refer the
reader to Section 2.

We modified one of the best-performing virtual force-based algorithms in the lit-
erature, that is, the Parallel and Distributed Network Dynamics (PDND) algorithm
[Ma et al. 2008]. PDND is one of the most complete solutions based on VFA currently
available. In particular, unlike several previous proposals, it is formally proven that,
under PDND, the sensors stop moving in a finite time without position oscillations that
are typical of many VFA-based solutions. Furthermore, the algorithm shows very good
performance in terms of coverage and uniformity of the final sensor distribution. For
this reason, we extend PDND to deal with both position-dependent sensing capabilities
and obstacles.

PDND is a round-based algorithm and sensors are synchronized. At each round,
sensors broadcast their position and collect the information sent by neighbors. Then
each sensor moves according to the virtual force acting on itself. The virtual force acting
on a sensor is the vectorial sum of the forces exerted by its neighbors. In particular,
given two sensors si and sj at a distance d, the force exerted by si on sj is modeled
as a piecewise linear continuous function: it is repulsive if d < r∗, and attractive if
r∗ < d < r f , where r∗ and r f are manually tuned parameters. The setting of these
parameters is critical for the algorithm performance and is dependent on the value of
the sensing radius rs. In the case of sensors with homogeneous sensing radii, in order
to obtain a deployment that is close to a hexagonal pattern with minimum overlap and
no coverage holes, it is r∗ = √

3rs and r f = 2rs.
We introduce two major modifications to PDND in order to let it work with position-

dependent sensing ranges and in the presence of obstacles. We set r∗ = √
3(ri + rj)/2,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

7:18 N. Bartolini et al.

where ri and rj are the position-dependent sensing radii of si and sj , respectively. In the
case of homogeneous sensors, this setting corresponds to a regular hexagonal pattern.
Notice that PDND has a guaranteed termination only if the virtual force function is
Lipschitz continuous. The presence of asperities implies a discontinuity in the force
function. In order to ensure the termination of PDND in the presence of asperities, we
introduce a centralized oscillation control method as in Heo and Varshney [2005]. In
particular, we consider a sensor to be in an oscillatory state if the global movement
of the previous m rounds is less than εm. We halt the algorithm execution as soon as
all sensors are in an oscillatory state. We highlight that, although impractical, this
centralized oscillation control constitutes an advantage for PDND; thus, our compar-
isons are fair. Furthermore, we apply such a centralized termination method only in
scenarios characterized by the presence of asperities.

In order to let sensors deploy in the presence of obstacles, we adopt the same method
proposed in Ma et al. [2008] to let sensors move according to the force component that is
parallel to the obstacle borders. Moreover, in order to confine sensor movements within
the AoI, we consider the borders of the AoI in the same way as obstacles.

7. EXPERIMENTAL RESULTS

In this section, we introduce some performance comparisons between DOMINO and
PDND. In order to compare the performance of the two algorithms, we developed a
simulator on the basis of the wireless module of the OPNET simulation environment
[Riverbed - OPNET Technologies].6

In the experiments, we use the following parameter setting: homogeneous communi-
cation radius rtx = 15m, homogeneous device sensing radius (locally altered by ground
asperities in a position-dependent manner) rs = 5m, sensor speed v = 1m/s, AoI size
80 × 80m2, tile side of the skeleton grid ls = √

2rs. Furthermore, we enable a delay in the
regridding activity, as described in Section 4.3.2, by setting the parameter � = 1000sec.
We use the setting proposed in Ma et al. [2008] for PDND: round length tround = 1sec
and minimum movement threshold lthr = 0.1m. In scenarios characterized by the pres-
ence of asperities, PDND does not ensure convergence; thus, we adopt the centralized
termination method described in Section 6 by setting m = 20 and εm = 0.01m. We
use the following sensor energy consumption model: a sensor consumes energy as a
consequence of movements (for traversing the desired distance and start/stop actions
[Sibley et al. 2002]) and communications (sending, listening to, and receiving mes-
sages). We express the energy consumption of these actions in terms of energy units
(eu). The reception of one message corresponds to crc = 1eu, a single transmission costs
ctx = 1.2eu, a 1-meter movement costs cmv = 340eu, and a single start/stop action costs
css = 340eu [Anastasi et al. 2004].

We consider indoor and outdoor scenarios with and without asperities in order to
study the performance of the two algorithms, and we consider an initial placement of
the sensors in a small squared safe area Ainit at the bottom left of the AoI, with size
10m × 10m.

Finally, we study the sensitivity of the two algorithms with respect to possible inac-
curacies in estimation of obstacle location and sensing ranges.

7.1. Benchmark Scenario Without Asperities and Obstacles

Before showing more complex results, we first show that the modifications we made
to PDND do not compromise the performance of the original algorithm in any aspect,
but are only meant to extend its applicability to scenarios with ground asperities.

6The entire simulator code of both DOMINO and PDND can be downloaded from http://web.mst.edu/∼
silvestris/domino/.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

http://web.mst.edu/~silvestris/domino/
http://web.mst.edu/~silvestris/domino/

Autonomous Mobile Sensor Placement in Complex Environments 7:19

Table I. Simulation Parameters

Parameter Value Description
rtx 15m Transmission radius (homogeneous)
rs 5m Sensing radius (homogeneous)
v 1m/sec Device speed
ls

√
2rs Side of skeleton grid

AoI 80 × 80m2 Size of the AoI
Ainit 5 × 5m2 Safe area where sensors are deployed initially
crc 1eu Energy expenditure for receiving 1 message
ctx 1.2eu Energy expenditure for transmitting 1 message
cmv 340eu Energy cost of a movement of 1m
css 340eu Energy cost of a stop and start action

tround 1sec Duration of a single round (PDND)
lthr 0.1m Minimum movement threshold (PDND)
� 1,000sec Regridding delay (DOMINO)
m 20 Maximum number of oscillatory movements (PDND)
εm 0.01m Distance threshold for oscillation control (PDND)

We considered a smooth area 80 × 80m2, with no obstacles or ground asperities. In
such a scenario, the minimum number of sensors that guarantees coverage of the area
according to the analysis of Section 5.1.1 is Nflat = [80 + 2 · (2rs)]/(2 · r2

s) = 200
sensors. When the number of sensors is 200 or higher, all the algorithms achieve
complete coverage, namely, 100% of the AoI. Figure 6 shows the execution of both the
original and the modified version of PDND by varying the number of sensors. In the
interest of fairness, we ran the same experiments for DOMINO.

The figure shows that the original version of PDND, named “PDND-orig,” performs
exactly the same as the modified version, referred to as “PDND-mod.” In fact, in a
scenario without obstacles and ground asperities, the two variants of PDND perform
the same movements and message transmissions. It can be seen from Figure 6(a) that
PDND needs considerably more time than DOMINO to achieve the same coverage.
Although PDND provides the same coverage with a slightly lower average movement
distance, which is shown in Figure 6(b), it also requires a number of stop and restart
actions that is orders of magnitude higher than DOMINO, as shown in Figure 6(c). This
implies that both versions of PDND consume more than 10 times the energy consumed
by DOMINO, as shown in Figure 6(d).

This analysis shows that the changes we provided to PDND extend its applicability to
a wider range of operative scenarios, without harming its performance in the settings
for which it is specifically designed. For this reason, in the following experiments, we
use only the modified variant of PDND, which is hereafter called PDND for shortness
of notation.

7.2. Experimental Scenario 1: Indoor

In this indoor scenario, the AoI contains walls, doors, and corridors. Sensors are initially
deployed in a safe location, which is a room at the bottom-left corner of the area
(see Figure 5(a)). Black dots are sensors, while gray circles are their sensing ranges.
Figure 5(b) and Figure 5(c) show the final deployment achieved under DOMINO and
PDND, respectively, when 300 sensors are initially deployed as shown in Figure 5(a).
DOMINO successfully constructs the skeleton grid, which is refined by performing the
regridding activity when root sensors do not entirely cover their responsibility regions.
The Pull activity enables the flow of sensors toward uncovered areas even in such a
complex environment. On the contrary, under PDND, sensors remain trapped in the
first traversed rooms (they are stuck at high density along the walls). This is due to the
fact that PDND aims at covering the AoI in an indirect manner, thanks to repulsive

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

7:20 N. Bartolini et al.

Fig. 5. Scenario 1: Indoor: an example of initial deployment with 300 sensors (a); final deployment under
DOMINO (b) and PDND (c).

Fig. 6. Benchmark scenario: No asperities, no obstacles: Termination time (a), traversed distance (b), num-
ber of movements (c), consumed energy (d).

force exerted among sensors that are close to each other. Obstacles, corridors, and
narrows create the condition for the equilibrium of virtual forces, as a considerable
component of the force vectors is directed toward walls and obstacles. Therefore, the
sensors are not able to spread and increase coverage of the AoI.

In the following experiments, we increased the number of deployed sensors from 100
to 450. Figure 7(a) shows the percentage of covered AoI achieved by DOMINO and
PDND. DOMINO outperforms PDND as it achieves a higher coverage under all the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

Autonomous Mobile Sensor Placement in Complex Environments 7:21

Fig. 7. Scenario 1: Indoor: Coverage (a), termination time (b), number of movements (c), consumed energy
(d).

considered settings. The coverage of DOMINO linearly increases with the number of
sensors and becomes complete with about 270 sensors. On the contrary, PDND is not
able to spread the sensors over the AoI and it only achieves 60% of coverage even when
the number of sensors is 50% higher than needed by DOMINO for full coverage.

Figure 7(b) compares the termination time of the two algorithms, that is, the time
required to achieve the final deployment. PDND shows an increasing termination
time with respect to the number of sensors, highlighting the difficulties of finding
an equilibrium of the virtual forces when more sensors are deployed. By contrast,
DOMINO enables a fast convergence to the final deployment, resulting in a much
shorter deployment time than PDND. The peak of the termination time of DOMINO
when the number of sensors is about 270 can be explained as follows. When the number
of sensors is not sufficient for achieving full coverage, the push activity is not able to
proactively spread the slaves over the area. Thus, the termination time is dominated by
the pull activity performed to move sensors from the initial locations to the boundary
of the covered zone. When the number of sensors is higher, the push activity is able to
better spread the sensors over the AoI, reducing the time required by the Pull activity
to attract sensors where needed.

The average number of start/stop actions is depicted in Figure 7(c). This is an im-
portant metric to evaluate the performance of mobile sensors’ deployment algorithms
since starting and stopping a movement consumes a significant amount of energy.
PDND shows a number of moving actions that is two orders of magnitude higher than
the one of DOMINO. The difficulty of finding an equilibrium of virtual forces causes
a high number of small movements. DOMINO, instead, performs precise movements,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

7:22 N. Bartolini et al.

Fig. 8. Scenario 2: Outdoor: an example of initial deployment with 300 sensors (a) and final deployment
under DOMINO (b) and PDND (c).

resulting in a much lower number of moving actions. It must be noted that PDND
has such a higher number of movements than DOMINO, despite sensors’ traversed
distance being considerably lower, because PDND only achieves coverage of the 60%
of the AoI. Figure 7(d) shows a cumulative energy consumption metric that includes
the energy consumed for communications and movements. Although PDND lets sen-
sors traverse shorter distances with respect to DOMINO, the higher communication
cost due to its round-based nature, as well as the higher number of moving actions,
dominates the resulting energy consumption.

7.3. Experimental Scenario 2: Outdoor

The second set of experiments considers an outdoor scenario with random obstacles
over the AoI. In particular, we deployed 30 rectangular obstacles with random positions
over the area. Obstacles have random rotation, and side length is uniformly distributed
in the interval (0,20]. Sensors are initially deployed from a safe location similar to the
one of the previous scenario. We increase the number of deployed sensors from 100 to
450.

Figure 8(a) shows an initial deployment with 250 sensors, while Figures 8(b) and 8(c)
depict the final deployment achieved by DOMINO and PDND, respectively. DOMINO is
able to successfully complete the coverage of the AoI. Thanks to the pull and regridding
activities, root sensors are able to attract the required sensors and to fill the coverage
holes created by the obstacle distribution. On the contrary, although PDND works
better indoors than outdoors because sensors do not remain trapped in rooms and
narrows, the algorithm is not able to efficiently use the available sensors and complete
the coverage.

Figure 9(a) shows the coverage achieved by the two algorithms. PDND is able to
achieve full coverage in this scenario, but the presence of random obstacles impedes
the free flow of sensors, making it require a higher number of sensors with respect to
DOMINO. As a result, DOMINO exploits the available sensors more efficiently and
requires 44% fewer sensors than PDND to achieve full coverage. It must be noted
that DOMINO requires fewer sensors in Scenario 2 than in Scenario 1 to achieve full
coverage for two reasons: first, in Scenario 2, a large portion (more than 10%) of the
AoI does not need to be covered as it is occupied by obstacles; second, while the walls of
Scenario 1 shield portions of adjacent rooms that require more sensors to be covered,
in Scenario 2, this shield effect is rare.

The average traversed distance and the average number of start/stop actions are
depicted in Figures 9(b) and 9(c), respectively. Similarly to the previous scenario,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

Autonomous Mobile Sensor Placement in Complex Environments 7:23

Fig. 9. Scenario 2: Outdoor: Coverage (a), traversed distance (b), number of movements (c), consumed energy
(d).

Fig. 10. Scenario 2: Outdoor: termination time (a), coverage with increasing number of obstacles (b).

DOMINO lets sensors traverse longer distances, but it achieves a higher coverage.
Moreover, it requires two orders of magnitude fewer start/stop actions per sensor with
respect to PDND. As a result, DOMINO requires an order of magnitude less energy
with respect to PDND, as shown in Figure 9(d). Furthermore, the high number of small
movements required by PDND to find an equilibrium of the virtual forces results in a
longer termination time, as Figure 10(a) shows.

Notice that DOMINO terminates faster than in Scenario 1 due to the shorter network
diameter. On the one hand, the push activity spreads sensors more effectively. On the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

7:24 N. Bartolini et al.

Fig. 11. Scenario 3: Asperities: An example of initial deployment with 700 sensors (a) and final deployment
under DOMINO (b) and PDND (c).

other hand, the Pull activity is able to attract sensors by using a search with a smaller
horizon.

The previously described results highlight the good scalability of DOMINO with
respect to the number of sensors. The same cannot be said for PDND, where the
availability of more sensors makes it harder to find an equilibrium of virtual forces.

In order to further study the performance of the two algorithms in complex outdoor
environments, we performed some experiments by increasing the number of random
obstacles and fixing the number of deployed sensors to 300. The coverage achieved by
the two algorithms is shown in Figure 10(b). Both algorithms achieve a lower coverage
as the number of obstacles increases. Nevertheless, DOMINO is less affected than
PDND. The increase in the number of obstacles creates narrows, which precludes
sensor movements under PDND as explained for the indoor scenario. On the contrary,
DOMINO only has to perform a larger number of regridding actions to complete the
coverage of each tile. The decrease in coverage under DOMINO is due to the lack of a
sufficient number of sensors to fill all regridding positions.

7.4. Experimental Scenario 3: Asperities

In this scenario, we compare the performance of PDND and DOMINO in the presence
of asperities that reduce the sensing capabilities. We consider an AoI with two zones
Z1, Z2 with equal withering factor α = 0.3. The sensors are initially deployed from a
safe location at the left-bottom corner of the AoI (see Figure 11(a)). We increased the
number of deployed sensors from 200 to 900.

Figures 11(b) and 11(c) depict an example of the final deployment achieved by 700
sensors under DOMINO and PDND, respectively. DOMINO is able to entirely cover
the AoI with the available sensors. Notice that, under the considered setting, two levels
of regridding are necessary to completely cover a region located inside an asperity. As
a result, thanks to the release activity, each root sensor, whose responsibility region
intersects an asperity, places at most 16 adjunct sensors. On the contrary, PDND does
not efficiently use the available sensors and leaves the asperities uncovered.

Figures 12(a) and 12(b) show the percentage of coverage achieved by PDND and
DOMINO over the entire AoI and over the asperities, respectively. DOMINO delays
the regridding thanks to the parameter �, giving precedence to the construction of the
top-level grid. As a result, when few sensors are available, DOMINO achieves a higher
coverage of the AoI but a lower coverage of the asperities with respect to PDND. As the
number of sensors increases, all the snap positions are filled and the remaining sensors
can be used for regridding actions, and thus DOMINO achieves a higher coverage even

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

Autonomous Mobile Sensor Placement in Complex Environments 7:25

Fig. 12. Scenario 3: Asperities: Coverage of the AoI (a) and of the asperities (b).

Fig. 13. Coverage of the AoI with inaccurate obstacle estimation (a); coverage of the asperities with inaccu-
rate estimate of sensing range (b).

inside the asperities. PDND does not efficiently use the available sensors with respect
to DOMINO. As a numerical example, when DOMINO achieves complete coverage of
the asperities, PDND only covers 65%.

For the sake of brevity, we omit the results related to the traversed distance, number
of movements, total energy consumption, and termination time, which are similar to
what we described for the previous scenarios.

7.5. Sensitivity to Inaccuracies

In this section, we analyze the sensitivity of DOMINO and PDND with respect to
inaccuracies that may occur in the estimation of obstacle locations and sensing ranges.

In a first scenario, sensors are deployed in an outdoor environment with randomly
deployed obstacles, as in Section 7.3. Sensors may incur in a random error estimat-
ing the obstacle size. The error is expressed as a percentage of the actual value. We
assume that the error may only result in an overestimation of the obstacle size, as un-
derestimations can more easily be detected. In the experiments, we deploy 250 sensors
and 20 random obstacles. The coverage of the AoI is shown in Figure 13(a). PDND is
significantly affected by the estimation error because some narrows between obstacles
may be perceived as obstructed, preventing sensors from flowing and covering the AoI.
On the contrary, DOMINO is more robust since sensors can circumnavigate perceived
obstructions by using different paths.

In the second scenario, we consider an AoI with two asperities, as in Section 7.4. We
assume that sensors erroneously estimate the withering factor α. We express the error

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

7:26 N. Bartolini et al.

as a percentage of the actual factor. In the experiments, we deploy 800 sensors. The
resulting coverage of the asperities is shown in Figure 13(b). DOMINO is more robust
than PDND. The presence of errors worsens the performance of PDND, preventing
sensors from covering the asperities. On the contrary, the quadtree-based deployment
of DOMINO reduces the impact of the erroneous estimate.

8. CONCLUSIONS

In this article, we introduced DOMINO, a deployment algorithm for mobile sensors
designed to work in unknown environments characterized by the presence of obstacles
and noise sources that make sensor capabilities anisotropic. According to DOMINO,
mobile sensors construct a top-level grid following a regular pattern. Such a grid is
autonomously distorted by the mobile sensors and adapted to the environment during
the deployment phase. Furthermore, additional sensors are placed if the sole top-level
grid does not meet coverage requirements.

We formally prove that DOMINO achieves full coverage and terminates in a finite
time if enough sensors are available. Furthermore, we provide some bounds on the
minimum number of sensors necessary to achieve full coverage. We compare DOMINO
to a modified version of the PDND algorithm. DOMINO outperforms PDND both in
indoor and outdoor scenarios, achieving full coverage with fewer sensors, in a shorter
time and with a lower energy consumption.

REFERENCES

Giuseppe Anastasi, Marco Conti, Alessio Falchi, Enrico Gregori, and Andrea Passarella. 2004. Performance
measurements of mote sensor networks. In ACM Proceedings of MSWiM 2004, 174–181.

Amotz Bar-Noy, Theodore Brown, Matthew P. Johnson, and Ou Liu. 2009. Cheap or flexible sensor coverage.
IEEE Proceedings of DCOSS, Lecture Notes in Computer Science 5516 (2009), 245–258.

Novella Bartolini, Giancarlo Bongiovanni, Tom La Porta, and Simone Silvestri. 2014a. On the vulnerabilities
of the virtual force approach to mobile sensor deployment. IEEE Transactions on Mobile Computing
(TMC) 13, 11, (2014), 2592–2605.

Novella Bartolini, Giancarlo Bongiovanni, Tom La Porta, Simone Silvestri, and Francesco Vincenti. 2014b.
Voronoi-based deployment of mobile sensors in the face of adversaries. IEEE Proceedings of the Interna-
tional Conference on Communications (ICC’14).

Novella Bartolini, Tiziana Calamoneri, Annalisa Massini, and Simone Silvestri. 2011a. On adaptive density
deployment to mitigate the sink-hole problem in mobile sensor networks. Springer Mobile Networks and
Applications 16, 1 (2011), 134–145.

Novella Bartolini, Tiziana Calamoneri, Thomas F. La Porta, and Simone Silvestri. 2011b. Autonomous
deployment of heterogeneous mobile sensors. IEEE Transactions on Mobile Computing (TMC) 10, 6
(2011), 753–766.

Tomas Beran, Richard B. Langley, Sunil B. Bisnath, and Luis Serrano. 2007. High-accuracy point positioning
with low-cost GPS receivers. Navigation 54, 1 (2007), 53–63.

Nirupama Bulusu, John Heidemann, and Deborah Estrin. 2000. Gps-less low cost outdoor localization for
very small devices. IEEE Personal Communications Magazine 7, 5 (October 2000), 28–34.

Jiming Chen, Shijian Li, and Youxian Sun. 2007. Novel deployment schemes for mobile sensor networks.
Sensors 7 (2007), 2907–2919.

Yoann Dieudonné, Ouiddad Labbani-Igbida, and Franck Petit. 2008. Circle formation of weak mobile robots.
ACM Transactions on Autonomous and Adaptive Systems (TAAS) 3, 4, Article 16 (Dec. 2008).

Adriano Fagiolini, Antonio Bicchi Lisa Tani, and Gianluca Dini. 2008. Decentralized deployment of mobile
sensors for optimal connected sensing coverage. In IEEE Proceedings of the International Conference on
Distributed Computing in Sensor Systems (DCOSS’08). 486–491.

Rafael Falcon, Xu Li, and Amiya Nayak. 2011. Carrier-based focused coverage formation in wireless sensor
and robot networks. IEEE Transactions on Automatic Control (TAC) 56, 10 (2011), 2406–2417.

Michele Garetto, Marco Gribaudo, Carla-Fabiana Chiasserini, and Emilio Leonardi. 2007. A distributed
sensor relocation scheme for environmental control. International Conference on Mobile Ad Hoc and
Sensor Systems (MASS’07).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

Autonomous Mobile Sensor Placement in Complex Environments 7:27

Seth Gilbert, Nancy Lynch, Sayan Mitra, and Tina Nolte. 2009. Self-stabilizing robot formations over unre-
liable networks. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 4, 3, Article 17 (July
2009).

Hongliang Guo, Yaochu Jin, and Yan Meng. 2012. A morphogenetic framework for self-organized multirobot
pattern formation and boundary coverage. ACM Transactions on Autonomous and Adaptive Systems
(TAAS) 7, 1, Article 15 (May 2012).

Azwirman Gusrialdi, Sandra Hirche, David Asikin, Takeshi Hatanaka, and Masayuki Fujita. 2009. Voronoi-
based coverage control with anisotropic sensors and experimental case study. Intelligent Service Robotics
2 (2009), 195–204.

Nojeong Heo and Pramod K. Varshney. 2005. Energy-efficient deployment of intelligent mobile sensor net-
works. IEEE Transactions on Systems, Man and Cybernetics 35 (2005), 78–92.

Andrew Howard, Maja J. Matarić, and Gaurav S. Sukhatme. 2002. Mobile sensor network deployment using
potential fields: A distributed, scalable solution to the area coverage problem. In Proceedings of the
International Symposium on Distributed Autonomous Robotic Systems (DARS’02).

Khoufi Ines, Minet Pascale, Laouiti Anis, and Livolant Erwan. 2014. A simple method for the deployment
of wireless sensors to ensure full coverage of an irregular area with obstacles. In Proceedings of the
ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MsWIM’14). 203–210.

Matthew B. Johnson, Deniz Sariöz, Amotz Bar-Noy, Theodore Brown, Dinesh Verma, and Chai Wah Wu.
2009b. More is more: The benefits of denser sensor deployment. In IEEE Proceedings of the International
Conference on Computer Communications (INFOCOM’09)

Wesley Kerr, Diana F. Spears, William M. Spears, and David R. Thayer. 2004. Two formal fluid models for
multi-agent sweeping and obstacle avoidance. In Proceedings of the Conference on Autonomous Agents
and Multiagent Systems (AAMAS’04).

Xu Li, Greg Fletcher, Amiya Nayak, and Ivan Stojmenovic. 2014. Placing sensors for area coverage in a
complex environment by a team of robots. ACM Transactions on Sensor Networks (TOSN) 11, 1, Article
3 (August 2014).

Vladimir J. Lumelsky and Alexander A. Stepanov. 1987. Path-planning strategies for a point mobile automa-
ton moving amidst unknown obstacles of arbitrary shape. Algorithmica 2 (1987), 403–430.

Ke Ma, Yanyong Zhang, and Wade Trappe. 2008. Managing the mobility of a mobile sensor network using
network dynamics. IEEE Transactions on Parallel and Distributed Systems (TPDS) 19, 1 (2008), 106–
120.

Ming Ma and Yuanyuan Yang. 2007. Adaptive triangular deployment algorithm for unattended mobile sensor
networks. IEEE Transactions on Computers (TOC) 56, 7 (2007), 946–958.

Sonia Martinez, Jorge Cortes, and Francesco Bullo. 2007. Motion coordination with distributed information.
IEEE Control Systems Magazine (August 2007), 75–88.

Memsic MTS420/400 Datasheet. 2017. https://www.memsic.com/userfiles/files/Datasheets/WSN/mts400_
420_datasheet-t.pdf, last accessed on May 2017.

Akihisa Ohya, Takayuki Ohno, and Shin’ichi Yuta. 1996. Obstacle detectability of ultrasonic ranging system
and sonar map understanding. Robotics Autonomous System 18, 1 (1996), 251–257.

Celal Ozturk, Dervis Karaboga, and Beyza Gorkemli. 2011. Probabilistic dynamic deployment of wireless
sensor networks by artificial bee colony algorithm. Sensors 11 (2011), 6056–6065.

Muhammed R. Pac, Aydan M. Erkmen, and Ismet Erkmen. 2006. Scalable self-deployment of mobile sensor
networks: A fluid dynamics approach. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’06).

Neal Patwari, Joshua N. Ash, Spyros Kyperountas, Alfred O. Hero, Randolph L. Moses, and Neiyer S. Correal.
2005. Locating the nodes: Cooperative localization in wireless sensor networks. IEEE Signal Processing
Magazine 22, 4 (2005), 54–69.

Riverbed - OPNET Technologies. Retrieved from. http://www.riverbed.com/products/performance-manage
ment-control/.

Gabriel T. Sibley, Mohammad H. Rahimi, and Gaurav S. Sukhatme. 2002. Mobile robot platform for large-
scale sensor networks. In IEEE Proceedings of the International Conference on Robotics and Automation
(ICRA’02).

Guang Tan, Stephen A. Jarvis, and Anne-Marie Kermarrec. 2009a. Connectivity-guaranteed and obstacle-
adaptive deployment schemes for mobile sensor networks. IEEE Transactions on Mobile Computing
(TMC) 8, 6 (2009), 836–848.

Muhammad Tariq, Zhenyu Zhou, Yong-Jin Park, and Takuro Sato. 2010. Diffusion based self-deployment
algorithm for mobile sensor networks. In IEEE Proceedings of the Vehicular Technology Conference
(VTC’10).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

http://www.riverbed.com/products/performance-management-control/
http://www.riverbed.com/products/performance-management-control/

7:28 N. Bartolini et al.

Zhiliang Tua, Qiang Wang, Hairong Qi, and Yi Shena. 2012. Flocking based distributed self-deployment
algorithms in mobile sensor networks. Journal of Parallel and Distributed Computing 72, 3 (2012),
437–449.

Guiling Wang, Guohong Cao, and Thomas La Porta. 2006. Movement-assisted sensor deployment. IEEE
Transactions on Mobile Computing (TMC) 6 (2006), 640–652.

Received October 2015; revised June 2016; accepted January 2017

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 7, Publication date: May 2017.

